

Reinforcement Learning in Finance

Presentation outline

Part 1: Introduction to Reinforcement Learning

Part 2: Practical use-case of RL in Finance

A bit of background..

Link

Reinforcement Learning Introduction

Introduction

GOAL: Learn how to take actions in order to maximize reward

SPOILER: How to solve the problem?

Approach 1:

Estimate the **value** of being in a given **state**

Value-based Methods

Approach 2:

Learn a **policy** that maps **states** to **actions**

Policy-based Methods

Mixed approach:

Actor-Critic Methods

More applications here

Some mathematical definitions

Cumulative reward

$$G_{t} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}, \quad = R_{t+1} + \gamma G_{t+1}$$

 γ Discount rate

Policy $\pi(s, a) = \mathbb{P}[a|s]$ Deterministic

Value function

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t | S_t = s]$$
$$= \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s]$$
for all $s \in S$

Optimal value function

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s)$$

PROBLEMS:

- Traditional methods, based on dynamic programming require perfect knowledge of transition probabilities
- State and action spaces may be too large

Deep Reinforcement Learning

SOLUTION: Approximate policy and value function with neural networks

average Reward

WARNING: Current Limitations of RL

- Transferring to real world
- Sample inefficiency
- Reward function shaping

RL use-cases in Finance

- → Option Pricing [1]
- → Order-book execution [2][3]
- \rightarrow FX Trading [4]

 Reinforcement Learning Applied to Option Pricing K.S. Martin
Machine Learning for Market Microstructure and High Frequency Trading * Michael Kearns[†] Yuriy Nevmyvaka
"Active Learning in Trading Algorithms" by David Fellah, Head of the EMEA Linear Quant Research Group at J.P. Morgan
https://www.jpmorgan.com/global/markets/machine-learning-fx

RL Application: Portfolio Management

Problem Background

"Portfolio management is the process of selecting and investing in a mix of different financial products, with the goal of maximizing the long-term value of the portfolio while constraining the risk to an acceptable level."

Traditional quantitative methods:

- Markovitz Model
- Black & Litterman
- Factor Models

RL-Driven Portfolio

GOAL: Develop an RL agent that optimally allocates a portfolio between a set of assets (mix of equity indexes)

Starting project: <u>PGPortfolio</u> (allocation of a portfolio of cryptocurrencies [1])

Why use RL?

- \rightarrow Fully capture data dynamics, end-to-end automated process
- → Match loss function with investor's goals i.e. maximize profits and constrain risk
- \rightarrow Directly take into account also other factors such as commission costs

[1] A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem

State space

State space: price tensor (normalized prices + features) + last allocation weights

Action Space

Action space: new allocation weights w

Output allocation weights are stored in a Portfolio Vector Memory, and then re-used in the state definition

Policy Network

Reward function definition

$L(w) = -\lambda_r R_r(w) + \lambda_a R_a(w) + \lambda_c R_c(w)$

- L(w): loss function to be **minimized**, function of the action (allocation weights w)
- R_r: average **profits**, including transaction costs
- R_a: portfolio **exposure** to few assets
- R_c: weights changes between consecutive days

 λ_r , λ_a , λ_c : scalar values that balance the contribution of each reward/penalty

Training loop

Train:

- 1. Initialize PVM to equally weighted allocation
- 2. Load a batch of price tensors
- 3. Pass it as input to the network with previous weights \rightarrow compute new batch of weights
- 4. Perform optimization on loss function
- 5. Store new weights in PVM
- 6. Repeat from 2 (e.g. 40k times)

Backtest + online training:

- 1. Load one price tensor
- 2. Output single prediction and execute trade
- 3. Add new data to train set and perform few training iterations
- 4. Repeat from 1 until end of backtest

Results

Maximize portfolio value:

	Return	Sharpe
RL agent	57%	2.13
Equally weighted	2.5%	0.23

AXYON.AI

Results

Al-driven portfolio strategy creation

Looking for thesis projects - internships?

Drop us your CV at jacopo.credi@axyon.ai

For any question about the topic add my LinkedIn https://www.linkedin.com/in/fbassetto/

Suggested material about RL

Books:

- Reinforcement Learning: An Introduction

Courses:

- <u>UCL Course on RL</u> (best theoretical explanation)
- <u>HSE University Practical RL</u> (more hands-on)

Used indexes

ASX ALLORDINARIES

MSCI EURO

SP500

JAPAN SMALL CAP

TOPIX

Other parameters

Features:

- Rate of change (5d, 10d, 20d, 40d)
- Weighted Moving Average ratio (5d, 10d, 20d, 40d)

Window size:

- 40d

Normalization method:

- Normalize the close prices by the last day of the price tensor
- Leave all other features untouched