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Introduction



Who we are

Axyon AI is an Italian fintech company on a mission to 
build a factory of AI solutions for investment management
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Quiz: real or synthetic?
Solution

All images in the previous slides are synthetically generated! 

● Don’t believe me, try for yourself at https://www.thispersondoesnotexist.com/  (Karras et al. [1])

● Seminal paper: Goodfellow et al. “Generative Adversarial nets” [2]

Zhang et al. [3]

[GANs are] the most interesting idea in the last 10 years in Machine Learning, in my opinion. 

Yann LeCun, 2018 ACM Turing Award Laureate, Chief AI Scientist, Facebook - 28 July 2016



Project Goals and Scope



We only know the realized history of financial time series. What if we could generate alternative 
realistic paths or just model the conditional distribution of returns without making any 
assumption?

Potential Applications

● Data Augmentation

● Strategy Robustness Tests and Scenario Simulations

● Derivatives Pricing

● Outliers Detection

● Risk Management (Value At Risk estimation)

● ...

Why is generative modeling interesting?



Project Scope and Value at Risk

● With the aim to start with a relatively simple challenge we decided to model the distribution 
of returns with Generative Adversarial Networks (GANs) in order to estimate the Value at 
Risk (VaR) of a portfolio.

● To show that GANs can potentially become a promising technique for risk management, we 
decided to compare our approach with a traditional GARCH baseline.

● What is VaR? 



A note about our baseline: the GARCH

● If we assume that the conditional variance of a time series of stock returns is specified as  
linear function of both past squared returns and past conditional variances we say we are 
using a generalized autoregressive conditional heteroskedasticity model (GARCH).

● We basically estimate the variance at time t using a trained GARCH model and assume this is 
the variance of the chosen distribution we will use to compute the VaR. 

● Why do people use this approach? Well, it’s fast and easy to interpret and implement BUT 
we must rely on our assumptions on model specification and distribution of returns, 
which may be wrong.



VaR estimation with conditional 
GANs and GCNs



ANNs are mathematical models loosely inspired by the structure and operation of biological 
learning systems.

Artificial Neural Networks (ANNs)
A brief introduction

A single perceptron
A fully connected NN built of a variable 
number of perceptrons, organized in layers 



RNNs are networks with loops in them, allowing information to persist.

LSTMs are a special kind of RNN, capable of learning long-term dependencies.

Long Short Term Memory (LSTM)
Recurrent Neural Networks

The key to LSTMs is the cell state, the horizontal line running through the top of the diagram.
The LSTM does have the ability to remove or add information to the cell state, carefully 
regulated by structures called gates.
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It’s a min-max game!

⇒  D learns p ( y | X ), G learns p( X )

Generative Adversarial Networks
Mathematical framework



Univariate CGAN model



Results



Return distributions

The model is trained on daily FTSE MIB returns from 2000 to 2012 for 3000 epochs and 
tested on the following years (2013-2018). 



Return distributions



1. Train the Generator and Discriminator for 3000 epochs 

2. Test on the test set according to the below procedure [4]

Backtesting procedure

for each day t in test set:

while t in current month:

generate 3200 samples for t+1

compute VaR

update the Generator and Discriminator on the last 5 months for 2 epochs



Backtesting results
Univariate RCGAN



GAN vs GARCH

The two methods have similar VaR estimation.



Model validation
We use three different tests for our model validation [5]:

● The Proportion of Failure (POF) Test examines how many times a VaR is violated over a given 
span of time. 

● The Christoffersen’s Interval Forecast Test measures whether the probability of observing an 
exception on a particular day depends on whether an exception occurred on the previous 
day. 

● The Time Between Failures test incorporates the time information between all the exceptions 
in the sample, the number of periods between exceptions should be independent.

p-value



Advantages

➕ GAN can be viewed as universal 
approximators of probability 
distributions, useful when the 
underlying distribution is very 
complex (i.e financial time series)

➕ No assumption needs to be made

➕ Robust results for unconditional 
coverage and independence (though 
not for TBF)

Is it worth it?

Disadvantages

➖ Difficult to find a good set of 
hyperparameters and to tune the model

➖ Long training, other methods are faster

➖ Stochastic training requires careful 
setup for reproducibility

➖ As GARCH, the model is univariate…
...or is it?



Multivariate RCGAN



Graph Convolutional Network
GCNs generalize classical Convolutional Neural Networks (CNN) to the case of graph-structured 
data, images have a fixed structure, Graphs are much more complex. [6]

The graph can be represented by the adjacency matrix  A, it is a square matrix whose elements 
indicate whether pairs of vertices are adjacent, i.e. connected, or not.
In the simplest case,  Aij is 1 if there is a connection from node  i  to  j , and 0 otherwise.



In mathematical terms:

where W(l) is the weight parameters with which we transform the input features into messages 
(H(l)W(l)).  Finally, to take the average instead of summing, we calculate the matrix D which is a 
diagonal matrix with Dii denoting the number of neighbors node i has. σ represents an arbitrary 
activation function

Graph Convolutional Network



The LSTM nets capture the 
comprehensive influence of the 
temporal dependencies within each 
time series, they extract temporal 
dependencies.

The GCN (graph convolutional 
network) capture the interactional 
dependencies between time series, 
they extract interactional 
dependencies. [7]



Adjacency matrix, 1 if correlation 
between the two assets larger than 
threshold (corr > 0.7)

Results for 5 stocks (from EUROSTOXX50)



Further research
Improving multivariate RCGAN

● Try other methods to determine edges in the graph, e.g. the model could learn the adjacency 
matrix by itself

● Improve the model scalability, e.g. through weight sharing for the Generator and/or Discriminator

● Estimate the VaR of a portfolio and compare it to multivariate GARCH model



Another future research direction will entail experimenting with different (deep) generative 
models, evaluating their advantages/disadvantages, and compare them with our SOTA. 

Examples may include:

● Variational Autoencoders 
(e.g. VRNN, SRNN)

● Flow-based Models
(e.g. RealNVP, GLOW)

● Other (Energy-based Models, 
Diffusion Models, etc.) 

Further research
Beyond GANs

Models Training Likelihood Sampling

GANs Unstable No Fast

Autoregressive Stable Exact Slow

VAEs Stable Approximate Fast

Flow-based Stable Exact Fast/slow

... ... ... ...

Tomczak [8]
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Appendix: other VaR estimation with CGAN

We also tried training the model 
with 5-day (weekly) returns.

We can also estimate the VaR at other 
confidence levels, e.g. 99% (an important 
level for bank regulations)


