
UNIVERSITÀ DEGLI STUDI DI MODENA E

REGGIO EMILIA
Dipartimento di Ingegneria ”Enzo Ferrari”

Corso di Laurea Magistrale in Ingegneria Informatica

Optimize Heterogeneous Ensemble Search

Supervisor:

Prof. Simone Calderara

External Supervisors:

Giovanni Davoli
Alberto Zurli

Candidate:

Francesco Zampirollo

A.Y. 2023/2024

”Difficulties are things that show a person what they are.”

— Epictetus

2

Riassunto Analitico

Negli ultimi anni, l’impiego dei metodi di Ensemble è diventato sempre più diffuso,

rappresentando un paradigma altamente efficiente nel campo del Machine Learning.

Questo approccio combina un insieme di singoli modelli definiti deboli per produrre

predizioni robuste, trovando applicazione in numerosi settori.

Un problema noto all’interno dell’Ensemble Learning è avere diversità tra i modelli,

consentendo l’esplorazione di pattern differenti all’interno dei dati e garantendo etero-

geneità.

Questa tesi illustra lo sviluppo di un progetto volto all’ottimizzazione del processo di

esplorazione nello spazio di ricerca dei parametri di ensemble eterogenei, costituiti da

architetture e task differenti, sostenuto da uno studio relativo all’introduzione della di-

versità.

Il progetto è stato sviluppato presso Axyon AI, una società FinTech che supporta i

gestori di asset quantitativi attraverso strategie guidate da Machine & Deep Learning.

4

Abstract

In recent years, the use of Ensemble methods has grown rapidly, becoming a highly

effective approach in Machine Learning. This technique combines multiple individual

models, known as weak learners, to produce stronger predictions and is used in various

fields. A key challenge in Ensemble Learning is ensuring diversity among models, which

helps explore different data patterns and maintain heterogeneity.

This thesis describes a project focused on optimizing the exploration of the search

space for heterogeneous ensemble parameters, involving different architectures and

tasks, and includes a study on promoting diversity. The project was developed at

Axyon AI, a FinTech company that supports quantitative asset managers using Ma-

chine & Deep Learning strategies.

5

Contents

1 Introduction 12

1.1 Business Context . 12

1.2 Ensemble Learning . 12

1.2.1 Ensemble Intuition . 12

1.2.2 Ensemble Taxonomy . 13

1.2.3 Bagging . 14

1.2.4 Boosting . 16

1.2.5 Stacking . 17

1.2.6 Bias Variance trade-off . 17

1.3 Genetics Algorithms . 18

1.4 Random Search Algorithms . 19

1.5 Exploration vs Exploitation . 19

1.6 Motivations . 20

2 Road to new Random Search 22

2.1 One-to-One Porting . 22

2.1.1 Principal Components . 22

2.1.2 Flow Chart Old Version . 24

2.1.3 Policy Random . 25

2.2 Refactor Components . 27

2.2.1 Optuna Framework . 28

2.2.2 Routine Types . 31

2.2.3 Flow Chart Optimized Random Search 33

3 Baselines Models 37

3.1 Architectures and Methodologies . 37

3.1.1 Analysis . 40

3.1.2 Selected Configurations . 47

3.1.3 Performance Correlation of Baselines 48

4 Selection on Ensemble 50

4.1 Limitations . 50

4.2 Greedy Algorithm . 51

4.2.1 Key objective . 52

4.2.2 Performance Analysis on time execution 53

4.2.3 Performance Analysis on resources 54

4.3 Optimization Proposal . 54

4.3.1 Memory Consumption Comparison 56

4.3.2 Execution Time Benchmarking 57

4.3.3 Scaling on Jobs number . 58

4.3.4 Global Performance Running on cluster 59

5 Diversity 61

5.0.1 Preface . 61

5.1 Bias-Variance-Diversity Decomposition 62

5.1.1 Squared Loss . 62

5.1.2 Estimating Bias, Variance and Diversity 64

5.2 MSE vs. Spearman Correlation: Relationship 65

5.2.1 Components . 65

5.2.2 Diversity Therm . 66

5.2.3 Bias Therm . 67

5.3 Metric Conclusion . 68

6 Experiments on New Dataset 70

Conclusions 76

Acknowledgments 78

8

List of Figures

1.1 Ensemble Taxonomy . 14

1.2 Random Forest . 15

1.3 Bagging vs. Boosting . 16

1.4 Stacking procedure . 17

1.5 Bias-Variance Tradeoff . 18

1.6 Exploration vs Exploitation . 19

2.1 Flow Chart PHP algorithm . 24

2.2 Fill Population method . 25

2.3 Apply Policy method . 26

2.4 Combination - v1 . 29

2.5 Sampling by ID - v2 . 29

2.6 Types of sampling - v3 . 30

2.7 Ultimate version . 31

2.8 Flow Chart Optimized RS . 33

2.9 Ultimate Generate Population . 34

2.10 Progressive Decay . 35

3.1 XGB Regressor Performance Correlation 41

3.2 Random Forest Regressor Performance Correlation 42

3.3 Lasso Performance Correlation . 43

3.4 Gradient Boosting Regressor Performance Correlation 44

3.5 NN Regression Performance Correlation 45

3.6 NN Classsification Performance Correlation 46

3.7 Performance Correlation between Baselines 48

4.1 Profiling greedy selection on five job . 53

4.2 Jobs Predictions Vector on Greedy optimization 55

9

4.3 OLD - Execution time on five Jobs . 57

4.4 NEW - Execution time on five Jobs . 57

4.5 Execution time on five Jobs . 58

4.6 Execution time on ten Jobs . 58

4.7 Execution time on twenty Jobs . 58

4.8 Old Select Ensemble . 59

4.9 Optimized Select Ensemble . 59

5.1 Bagging increasing ensemble size . 63

5.2 Bagging increasing maximum depth . 63

5.3 Estimating Components on [5] . 64

5.4 MSE vs Spearman Correlation - Diversity Therm 66

5.5 MSE/Spearman Diversity Visualization 66

5.6 MSE vs Spearman Correlation - Bias Therm 67

5.7 Before . 67

5.8 After . 67

5.9 MSE/Spearman Bias Visualization . 67

6.1 Selected Jobs Correlation . 70

6.2 Distribution of Performance Correlation Values 70

6.3 Selected Jobs Predictions . 71

6.4 Diversity Selected Jobs . 71

6.5 Selected Jobs Correlation - New Metric 72

6.6 Distribution of Performance Correlation Values - New Metric 72

6.7 Selected Jobs Predictions using New Metric 73

6.8 Diversity Selected Jobs using New Metric 73

10

1. Introduction

1.1 Business Context

Founded in 2016 as an innovative start-up combining quantitative finance and AI,

Axyon AI is a company located in Modena. The primary goal is to support asset

manager with ad-hoc strategies built with powerful proprietary technologies of Machine

and Deep Learning. From the date of its foundation to today, Axyon has become a

benchmark in the sector thanks to the values that have always guided it:

1. Transparency

2. Growth and Learning

3. Excellence and Passion

A key point is the constant quest for new challenges and innovation, that motivates the

company to improve and enhance its processes, ensuring a better service.

1.2 Ensemble Learning

In the last few years ensemble learning has enjoyed growing attention due to high

efficiency and versatility in multiple areas. An ensemble is a collection of models trained

to achieve the same task. The basic concept of EL is the aggregation of the single

predictions in order to obtain a final, strong and more accurate prediction than single

weak learners.

1.2.1 Ensemble Intuition

Suppose we have an ensemble of binary classification functions: fk(x) for k = 1, ...,K.

Suppose that, on average, they have the same expected error rate:

ϵ = Ep(x,y)[y ̸= fk(x)] < 0.5 (1.1)

12

but that the errors they make are independent.

The intuition is that the majority of the K classifiers in the ensemble will be correct

on many examples where any individual classifier makes an error. A simple majority

vote can significantly improve classification performance by decreasing variance in this

setting.

Proof of Majority Voting

Suppose again to have an ensemble of K binary classifiers with accuracy probability

α > 0.5, the majority voting ensemble makes an error when K/2+1 classifiers make a

wrong predictions and error follows the cumulative binomial distribution:

P (x ≤ k) =
k∑

i=0

(
K

k

)
αi(1−α)K−i (1.2)

so the ensemble accuracy probability will be:

1−P (x ≤ k)

1.2.2 Ensemble Taxonomy

Ensemble methods can be classified into two types, depending on how they are trained:

parallel and sequential ensembles.

• Parallel Ensemble methods, train each component base model independently

of the others, which means that they can be trained in parallel. This category

can be also divided into:

1. Homogeneous parallel ensembles: all the base learner are of the same type

(e.g decision trees) and trained using the same base-learning algorithm.

2. Heterogeneous parallel ensemble: base learners are trained using different

base-learning algorithms.

• Sequential Ensemble methods, exploit the dependence of base learners. During

training, sequential ensembles train a new base learner in such a manner that it

minimizes the errors produced by the base learner trained in the previous step.

13

(a) Homogeneous Ensemble (b) Heterogeneous Ensemble

Figure 1.1: Ensemble Taxonomy

1.2.3 Bagging

Bootstrap aggregation or Bagging is the most basic parallel ensemble method, that takes

a single training set Tr and randomly sub-samples from it K times (with replacement)

to form K training sets Tr1, ...,T rK .

Each of these is used to train different instance of the same classifier obtaining K

classification functions: f1(x), ...,fK(x). The errors won’t be totally independent

because the data sets aren’t independent, however the random re-sampling usually

introduce enough diversity to reduce variance and give improved performance.

Bagging Proof

Suppose every classifiers learn:

y = fi(x)+ ei

where e is the error of i-th classifier.

The average error of M classifiers on the dataset D is:

ϵAV = 1
M

M∑
i=1

ED[ei]

The bagged prediction is:

ybagged = 1
M

M∑
i=1

fi(x)+ ei(x)

14

so, the average error of the bagged classifier is:

ϵ = ED[1
M

M∑
i=1

ei(x)]

Random Forest

A kind of extension of bagging, Random Forest introduce additional randomization

to ensemble. Specifically, refers to an ensemble of randomized decision trees as base

estimators and perform bagging to generate training subset.

Component

• Feature Vector: feature of data sample.

• Split Functions: assigned to each node of tree, are functions relative to specific

feature used to evaluate a sample.

• Thresholds: values used to evaluate the split functions going deep into the tree.

• Predictions: single prediction obtained once arrived in a leaf node.

Usually a single tree choose threshold and features into the features pool that maximize

a particular function (e.g Gain Information) and obtained all predictions from the

leaf nodes combine them for a single global prediction.

Figure 1.2: Random Forest

15

1.2.4 Boosting

Boosting is one of the most popular sequential ensemble method, the principal idea is

train models in order to correct the models errors.

Operating

Boosting start from dataset D, sequentially train equal classifier fi, focusing on errors

from fi−1. Assign to every xk ∈ D equal weights wk = 1
N

Iterating over the boosting stages:

1. sample dataset Di from D using weights {wi
k}N

k=1 as the sampling probability for

every record x.

2. train the i-th classifier fi on Di, measure the accuracy and record it as αi.

3. if xk has wrongly classified augment its weight at the next stage wi+1
k and re-

normalize weights.

The final decision rule is:

y(xnew) = sign(
M∑
i

αifi(xnew))

Important: every classifier in the boosting chain must have an accuracy ≥ 0.5

Figure 1.3: Bagging vs. Boosting

16

1.2.5 Stacking

Stacking is the most common meta-learning methods, gets its name because it stack

second classifier (also called meta learner) after the first layer of the base estimators.

The general stacking procedure has two steps:

1. First layer: fit base estimators on the training data. This step aims to create

diverse and heterogeneous set of classifiers.

2. Second layer: using a new dataset from the predictions of the first layer (meta-

features) obtain a final prediction to another estimator.

Figure 1.4: Stacking procedure

1.2.6 Bias Variance trade-off

Every model, producing predictions, is subject to these two components: bias, the ac-

curacy of the classifier, and variance, the precision of the trained classifier on different

training sets. In the EL it is possible to control these components: models with low

bias tend to have high variance and vice versa. On the other hand, it is known that

the ensemble aggregation process (e.g. averaging) has a smoothing (variance-reducing)

effect. The objective of EL is therefore to obtain models with relatively fixed bias and,

combining their outputs, to reduce the variance.

17

Figure 1.5: Bias-Variance Tradeoff

1.3 Genetics Algorithms

Also called Evolutionary Algorithms, these types of algorithms are inspired by the

theory of natural evolution, especially the phenomenon of adaptation. This is consid-

ered a form of optimization, referring to the gradual change in the algorithm’s properties

in response to changes in the environment (or search space). They are used for both

constrained and unconstrained optimization problems, aiming to find high-quality so-

lutions at the cost of execution time and slow convergence. A key concept in evolution

theory is the notion of population, a group of individuals of the same species that can

produce evolved and adapted offspring. In an optimization problem, each individual

have a fitness value, which is used to evaluate and select them. Through various pro-

cesses like mutation, combination, and crossover, individuals undergo transformations

to maximize their fitness and explore the search space for the best solution.

18

1.4 Random Search Algorithms

This family of algorithms is mainly used for global optimization problems, with the

feature of quickly finding a good solution without guaranteeing the global optimum.

The main goal of these algorithms is to create random configurations of hyperparameters

in a well-defined search space, looking for the combination that maximizes a certain

evaluation metric. Depending on the field of application, there are various methods to

navigate the search space, accompanied by different stopping criteria.

1.5 Exploration vs Exploitation

Many optimization problems are subject to this kind of dilemma, based on these two

concept: finding a local optimum around a point in the space (exploitation) against

searching optimum in all the space with all that it involves (exploration). Depending

on the target, is possible to implements algorithms oriented by one of those directions

or using a trade-off that allow to moving on the searching space changing both the

directions.

Figure 1.6: Exploration vs Exploitation

19

1.6 Motivations

Among the main business methodologies used to generate strategic predictions, the use

of ensembles plays an important role. For a while, an algorithm with a strong genetic

influence was used to create the pool of models that would form the ensemble. This first

approach was replaced by a second algorithm more oriented towards Random Search,

but still a hybrid of both, which over time revealed significant limitations, in particular:

1. Invasive Architecture: during the evolution of the genetic algorithm, simpler

architectures like Dense Neural Networks are trained and evaluated much faster

than more complex architectures like Convolutional Neural Networks. This pro-

cess leads to the gradual elimination of Convolutional architectures within the

population.

2. Needs of different architectures: it became increasingly evident after many

applications that creating ensembles of different architectures leads to better re-

sults. This is because different architectures are more likely to learn different

patterns in the data, and their diversity can ensure much more robust predic-

tions.

3. Exploitation vs Exploration: all optimization problems face this dilemma,

and the current version of the genetic algorithm is too biased for exploitation,

leading the population to converge towards a purely local optimum.

4. PHP Implementation: the algorithm is implemented in PHP, making it diffi-

cult to maintain over time and limiting the possibilities of improving the previous

limitations.

5. Intrinsic Properties: due to the influence of principles derived from genetic al-

gorithms, the algorithm is particularly sophisticated. Additionally, some intrinsic

characteristics seem forced when applied to the specific data and final objectives

for which it is used.

20

2. Road to new Random Search

In this section will be presented the different steps which have led to build a new,

dynamic and optimized, version of Random Search algorithm.

Starting from the previous version with its limitations that necessitated this project,

the implementation pipeline: design, refactor, and optimization will be detailed.

2.1 One-to-One Porting

In order to figure out the main procedure of the previous algorithm, the first step of

the pipeline is a kind of translation from PHP code to Python.

Since the old algorithm was inspired by concepts related to genetic algorithms, the

heart of functionality was the policy class, which from different extensions were made

depending on the type of evolutionary process.

2.1.1 Principal Components

Fundamental components of the previous version were:

1. Pool: contains all the information relative to ensemble desired features such

as: model architecture, number of elements (e.g population), type of problem (e.g

regression) and subtype (single or multiple labels), dataset handler parameters,

type of policy class, policy parameters and additional ones.

2. Job: single instance of model (with related attributes e.g feature mask, model

architecture, model parameters and so on) generated and ready to train; each job

is assigned to a specific pool id.

3. Policy: class related to policy used into searching process (there are several Policy

derived from evolutionary process) and each of them has specific behaviour during

the algorithm.

22

Final Goal

Generate and train a number of Jobs equal to the number of jobs required by max-

Population parameter of the pool; until then, the algorithm will continue to execute

iteratively in a while loop.

The entire process starts from a pre-existing pool that contains all the information

specified for the desired exploration.

Concept of Population

During execution, jobs initially will be created in a table called Population, where they

will be temporarily idle. For each instance in this table there are several attributes,

such as:

• Model Params: model parameters of a specific architecture

• Feature Mask: binary mask of selected features

• Job ID: id of the associated instance into the Job table (initially NULL)

• Fitness and Fitness Validation: where metrics will be saved when training is

completed (on different splits, e.g. cv-test)

• Origin: the type of job generation (e.g. creation, mutation, crossover)

• In Population To: by default, this is NULL; when a job is trained, it is set to

the current time of completion.

Next, jobs will be created in a second table called Job, where they will be ready to be

trained and additional fields (related to data saved during training) will be filled; this

double creation process is mainly used to insert and substitute individual job instances

within the population, which is the parameter that manage the stopping criterion.

23

2.1.2 Flow Chart Old Version

Figure 2.1: Flow Chart PHP algorithm
24

2.1.3 Policy Random

The most commonly used policy is the Random Policy. This type of policy was intro-

duced to adapt the evolutionary algorithm to a kind of Random Search. The random

policy is an extension of the generic Policy class, which contains generic methods that

distinguish between different types of policies (e.g. apply policy, fill population, and

others).

Feature

The version of this policy that simulates random search focuses primarily on two ele-

ments:

1. Feature Mask: consists of a defined number of features (contained within the

Pool information) as a binary mask vector.

2. Model Parameters: within the Pool, the architecture for exploration is defined,

and this element contains a dictionary with all the parameters that will complete

the desired architecture.

Making Population

Figure 2.2: Fill Population method

25

As shown in 2.2, the first step in generating the population is done using the fill population

method of the policy class. This method is important because it creates the first in-

stance of an Individual, assigning it both a feature mask and model parameters.

The feature mask is created in a completely random way. This mask is binary,

meaning each position can be either 0 or 1, with an equal chance to obtain both of them.

This randomness is key, because it ensures a wide variety of features mask, allowing

the algorithm to explore a large range of possibilities during optimization.

Similarly, the model parameters are chosen randomly from a repository con-

taining different configurations for the same model architecture. This random selection

ensures that the population starts with a different set of configurations, which is im-

portant for exploring the search space effectively.

At the end, all the individuals are added to the Population table.

Apply Policy

Figure 2.3: Apply Policy method

When a job complete its training, this method ensures the progression of the exploration

process, particularly through the replace pop method. With other types of policies,

a new individual is created by inheriting from the completed one; instead, with the

random policy, a new individual is generated randomly using the same method employed

for creating the initial population.

Prospective

Combining a random feature mask and random parameters for each individual intro-

duces a level of randomness that creates weak learners oriented towards a balance

26

between exploration and exploitation. This approach allows the model to explore dif-

ferent parts of the search space, as the random feature mask ensures a diverse selection

of features, while the random parameters introduce variability in how these features are

weighted and interpreted.

However, the method tends to favor exploitation because, as the population evolves,

certain feature masks and parameter combinations that show better performance are

likely to be reinforced. This leads the algorithm to focus more on optimizing known

good solutions rather than continuously exploring new ones. This focus on exploitation

helps the model to find effective solutions more quickly, but it also risks missing better

options that could be discovered through more exploration. One of the main reasons

for this is the use of the same architecture across all individuals, even though different

parameters are applied.

2.2 Refactor Components

Given the limitations discussed in the previous section, it is clear that to allow for

greater exploration, it is necessary to use heterogeneous ensembles supported by a

more dynamic version of the algorithm, particularly in terms of parameter exploration.

To create this software structure, it was necessary to implement and integrate the

following components:

1. Baselines: repository of different architectures, created ad-hoc for regression and

classification problems (detailed in the next chapter).

2. Optuna Framework: automatic hyperparameter optimization software frame-

work, used to optimize the parameter space for each architecture during the ex-

ploration.

3. Routine Default: a specific type of feature mask assigned to a defined number

of jobs, that can be included within the ensemble in order to obtain dedicated

weak learner that adopt forms not otherwise explored.

27

2.2.1 Optuna Framework

Optuna is an optimize open-source framework particulary designed for machine learn-

ing, used to automate hyperparameter search.

The main concept behind Optuna is the mechanism of sampler, an agent class

used to smart parameter sampling. Through sampler, Optuna dynamically balances

the exploration of new areas of the parameter space with the exploitation of already

promising areas.

Another important concept is the study, a process of optimization managed using

trials where each of these is a single evaluation of a parameter configuration.

Random Sampler

Among all the available sampler, for our purposes, the most suitable is the Random

Sampler: based on concept of independent sampling, which means that determines a

value of a single parameter without considering any relationship between parameters.

Combinations - V1

Initially, during the development of the Baselines, the first idea of integrating Optuna

was designed and implemented in the pool of the single available architecture (Neural

Network), using the set of different parameters employed by the previous version of the

algorithm.

The idea was to develop a function that, by iterating through all the existing param-

eter configurations of the Neural Network, would generate a dictionary of variability

containing:

• keys: name of single parameter that assume different values into some or all

configurations.

• values: list of values assumed by relative parameter

28

Figure 2.4: Combination - v1

Once the dictionary containing the variability of individual parameters within the con-

figurations is obtained, the method override model params is called. This method

replaces the parameter values (only if it appears in the dictionary) by randomly sam-

pling a value from the available options.

With a single architecture available, this initial methodology allows for obtaining

hybrid combinations of different fixed parameter sets, enabling a more extensive search

for better weak learners.

Sampling Architecture by ID - V2

Having developed Baselines Architecture (explained in the next chapter), the second

version of the optimization focused on using multiple heterogeneous architectures.

Just to introduce, Baselines are 14 architecture (10 for regression problems and

4 classification) created in order to obtain multiple uncorrelated (as much as possible,

without losing good performance) predictions with different type of architecture (e.g

Random Forest Regressor, XGBRegressor, Lasso and others).

Figure 2.5: Sampling by ID - v2

29

As shown, the study takes model parameters and type of architecture from

get model params by ID: this method will sample random an id (associated to relative

name and parameters of model) into a collections of Baselines; after that, will assign

to the trial the components that will build the Job.

Override - V3

To take full advantage of Optuna capabilities, the focus was redirected to using different

methods to introduce variety and multiple sources of optimization within the Baselines.

Specifically, different types of sampling were developed to further modify the archi-

tectures and enhance exploration.

By incorporating these sampling methods, aimed to introduce approaches for explor-

ing different architectures more comprehensively. On one hand, using various models

encouraged exploration by diversifying the types of architectures considered. On the

other hand, the ability to adjust individual parameters within each architecture en-

abled a little focus on exploitation, refining each model performance through targeted

optimization managed by Optuna.

This feature uses a specific field in the Pool (JSON field) to specify parameters that

should be overwritten in all architectures (e.g. the desired target type). Three types of

sampling were developed based on how these parameters are written in the JSON field:

1. List: sampling a random value from the available options in the list.

2. Tuple: by specifying a start, end, and step, a value will be chosen between the

start and end, skipping by the given step.

3. Key-Value pair: simply assigment to a specific key.

Figure 2.6: Types of sampling - v3

30

As shown in 2.6, any architecture that contains one or more of these parameters will

be overridden using the specific sampling method.

Ultimate Version

Since the strategy focuses on using heterogeneous architectures, V1 was removed be-

cause it was too complex to manage with multiple architectures; however, for the final

version, we decided to create a single feature that utilizes both versions (V2 and V3),

allowing for extensive variability in parameter and architecture selection during explo-

ration and completion of the weak learners pool.

Figure 2.7: Ultimate version

2.2.2 Routine Types

As mentioned before, the common procedure for generate each features mask is a ran-

dom generation of binary mask with equal probability to obtain both values. This

procedure does not account for which features are enabled or disabled, even if each of

them are more predictive than others.

In order to consider all possible features mask, it was necessary to develop a kind

of procedure to generate a specific number of Jobs associated to particular mask which

would never be cosidered with random generation.

So, the process of mask generation enables three types of routine:

1. Random: standard procedure used

31

2. Full Mask: generate a features mask with all features enabled

3. No context: generate a features mask that enables only the features considered

out of Instrument Related (also called Context Feature). These features are con-

sidered into the Context or out of Context depending on Investable Universe (if

a specific feature are into the investable universe or not)

Therefore, before starting the algorithm, it is possible to specify whether to use a

particular type of routine before the standard procedure or not (the default is to use

the random routine).

Both the full mask routine and the no context routine will initially generate a Job

with the desired routine for each architecture available in the models pool. This ensures

that each model is included with the specific feature mask in the weak learners pool

obtained at the end of the algorithm.

32

2.2.3 Flow Chart Optimized Random Search

Shown here is the diagram of the refactored and optimized version of the Random

Search. The final goal remains to obtain the required number of Jobs specified into

Pool attributes. The code has been set up as a script that, by taking Pool ID and

type of routine, completes the generation of all the weak learners using the preavious

Refactor Components.

Figure 2.8: Flow Chart Optimized RS

The script terminates once all the required jobs are trained and the respective metrics

are saved; as shown, the population management occurs in steps: in the first iteration,

a number of instances equal to the step size is generated. Subsequently, as the jobs are

completed, there is a gradual jobs generation mechanism (progressive decay) until

33

completion (as shown later).

Making Population

Figure 2.9: Ultimate Generate Population

Different from previous version, after Optuna generates all the trials, they are spawned

into both tables so that they are ready to be trained.

Making Population using Routine

The only difference in population generation using routines is that, instead of using

sampling by ID to retrieve the model parameters and architecture, a trial is created

for each baseline element; then, a mask is created satisfying the required routine type.

Once this is done, normal operation resumes, returning to the use of the random routine.

34

Refill: Progressive Decay

Figure 2.10: Progressive Decay

This methods wait until the 10% of total Jobs are completed and at this point, compute

the number of Jobs for refill the step population (60% of remaining Jobs) through the

generate pop methods.

With this method, the number of Jobs created will progressively reduce to 1 until

the exact maximum number of individuals is reached.

35

3. Baselines Models

As previously explained, the old algorithm initially required the use of a single architec-

ture for exploration. Since the goal was to obtain a heterogeneous set of architectures,

a study was conducted in parallel with the development of the new algorithm to create

selected architectures for producing a repository of templates to be used with the new

algorithm. The focus during this study was to identify, for each chosen architecture,

two or three configurations (selected from a set of configurations for the same archi-

tecture) that ensured the least correlation between predictions and demonstrated good

performance. This chapter will detail the development and selection process of these

configurations, the Baselines.

3.1 Architectures and Methodologies

For the creation of Baselines, the following architecture were picked to investigate in

order to obtain the final configurations for each oh them:

• XGB Regressor

• Neural Network

• Random Forest

• Lasso

• Gradient Boosting Regressor

• Logistic Regression

• Linear Regression

Indipendently of the problem at hand is classification or regression, the context for

creating the configurations is Learning-to-Rank (LTR).

37

In detail, each dataset contains multiple financial assets in a defined time-series. After

the training phase, in order to evaluate the configurations, models will produce a final

ranking (owned by Axyon). Each asset will be evaluated in a time horizon defined by

the target related to the specific problem; the ranking of the best-performing assets

within that horizon is determined based on return of the assets over horizon.

Axyon Platform

Through Axyon proprietary platform, it is possible to train models of various types

(e.g. sklearn, xgboost) using existing wrappers that handle:

1. General Settings: type of Job (e.g classification, regression) and subtype (e.g

single or multiple label), cluster options and others.

2. Training Parameters: data manipulator and splitting.

3. Model and Dataset: model type, model parameters, feature mask (always full

during the configuration tests) and dataset information.

By setting all of these, it is possible to schedule a list of jobs that are pending training.

Generate Configurations

Using the candidate architectures for both of problems, in order to find the final con-

figurations of the Baselines I applied the following approach:

1. For all the initial test, the dataset used is European Equity

2. Create for each architecture a group, where all tests conducted with that specific

model were included.

3. Starting from the most standard architecture possible, I tried varying the pa-

rameters from job to job, aiming to find a value for each customizable parameter

within the model that provided acceptable performance, while gradually changing

the others and keeping those already analyzed fixed.

38

4. Once obtaining the first configurations, the focus was to create uncorrelated and

also good performance therefore, I started to create and train multiple opposing

configuration (e.g more or less deep, using regularization terms or not, using high

and low values of dropout, increasing or decreasing learning rate and so on),

depending on model and parameters.

5. At this point, for each group of architectures, I achieved a number of configu-

rations that allowed me to analyze the trade-off between correlation and perfor-

mance (removing the configuration with poor performance).

39

3.1.1 Analysis

In this section will be illustrate all the analysis for each type of architecture through

which has been obtained the final configurations of Baselines. Within the paragraph

dedicated to each architecture, correlation matrices on the performance of some con-

figurations (out of the many tested, keeping those that performed best) will

also displayed.

XGB Regressor

From XGBoost Library, this architecture implements a ML algorithm of Gradient Boost-

ing Framework, using parallel tree boosting. Below, the main parameters considered

are shown, along with their default values and the values used during the search for

candidate architecture(s).

Parameter Default Value Adopted Values

objective reg:squarederror reg:squarederror, reg:absoluteerror

eval metric dep. on objective mae,rmse

max depth 6 3,5,6,8,12,14

learning rate 0.1 0.0009,0.08,0.03,0.1

earlystoppingrounds / 10,18,30,50,100

subsample 1 0.5,0.8,1

colsample bytree 1 0.5,0.8,1

min child weight 1 1,4,20,35,50

random state / none, random

alpha 0 0.005,0,0.3

In contrast to the other architectures, this one still requires further investigation as the

weak learners assigned to it tend to demonstrate overfitting during actual use.

40

Figure 3.1: XGB Regressor Performance Correlation

Random Forest Regressor

From Scikit-Learn Library, Random Forest Regressor fits a number of decision-trees on

various subsample of dataset.

Parameter Default Value Adopted Values

n estimators 100 10,30,100,150,200,300

criterion squared error squared error,absolute error

max depth none none,5,10,20

min sample split 2 none,0.2,0.6,2,5,30

min sample leaf 1 none,1,5,10,30

max features 1.0 none,log2,sqrt,0.8

random state none none,random

41

Figure 3.2: Random Forest Regressor Performance Correlation

Lasso

From Scikit-Learn Library, Lasso is a linear model trained with L1 prior as regularizer.

Parameter Default Value Adopted Values

alpha 1.0 0.0001,0.001,0.004,1.0

max iter 1000 50,70,100,250,1000,1500

random state none none,42

selection cyclic cyclic,random

tol 1e-4 1e-4,1e-2

42

Figure 3.3: Lasso Performance Correlation

As evidenced in the correlation matrix, Lasso (and also other linear models) exhibit a

very high correlation between different configurations. Compared to other architectures,

they consistently maintained high performance during tests.

Gradient Boosting Regressor

As mentioned into Scikit-Learn Library, this architecture train in each stage regression

tree on the negative gradient of specific loss function.

Parameter Default Value Adopted Values

learning rate 0.1 0.001,0.02,0.05,0.08,0.1

n estimators 100 10,50,100,200,500

subsample 1.0 none,0.6,0.7,1

max depth 3 2,3,4,5,10,15,25

validation fractions 0.1 0.1,0.3,0.5

loss squared squared,quantile

max leaf nodes none none,3,5,8,10,20

43

Figure 3.4: Gradient Boosting Regressor Performance Correlation

Neural Network

For Neural Networks in classification (and also regression) problem, the Axyon’s plat-

form uses a proprietary model to encapsulate the parameters related to this architecture

and train the configuration. To find the configurations for this architecture, the common

parameters explored are:

Parameter Adopted Values

layers [8,8],[16,16,16],[64,64,64],[64,32],[128,64],[256]

dropout none,0.25

hidden dropout none,0.4,0.5

L1 0.0002,0.01,0.05

L2 0.0005,0.05,0.02,0.01

epochs 100,150,200,350

44

Neural Network - Regression

Parameter Adopted Values

loss mse

output:hidden activation linear

output:output counts 1

Neural Network - Classification

Parameter Adopted Values

loss binary cross-entropy

output:hidden activation sigmoid

output:output counts 4

Figure 3.5: NN Regression Performance Correlation

45

Figure 3.6: NN Classsification Performance Correlation

Linear Regression

After observing the behavior of linear models, the standard architecture of Scikit-Learn

was used for Linear Regression.

Logistic Regression - Classsification

For this particular architecture, in a classification problem, the (previous) standard

Neural Network architecture was used, adapted to become a Logistic Regression model:

all hidden layers were removed, and a sigmoid activation function was applied at the

output to maintain the four neurons required for classification.

46

3.1.2 Selected Configurations

The correlation results within each individual architecture group confirmed the previ-

ous expectation: it is necessary to use heterogeneous ensembles to achieve robust

predictions. This is because combining different architectures helps to leverage their

individual predictivity and mitigate their weaknesses, to improve overall performance

and generalization on unseen pattern through the input data. For this reason, from the

entire group of different configurations of all the architectures, we selected the architec-

ture configurations that had a good balance of performance and low intra-architecture

correlation.

Regression Architecture Parameters

Lasso Reg. alpha=0.001, max iter=50, selection=random

Random Forest Reg. small max depth=5, max features=log2, min samples leaf=30

min sample split=0.2, n estimators=10

Random Forest Reg. deep n estimators=150, max depth=10, min sample split=5

min samples leaf=10, max features=sqrt

XGB Reg. medium n estimators=150, max depth=5, lr=0.08, subsample=0.5

earlystoppingrounds=100, colsample bytree=0.5

min child weight=35, random state=random

XGB Reg. deep n estimators=100, max depth=8, lr=0.1

earlystoppingrounds=30, subsample=0.5, lambda=1.3

random state=random

NN Reg. small layers[16,8], no dropout, no L1, no L2

NN Reg. medium layers[64, 64], dropout=0.7

GB Reg. medium n estimators=100, lr=0.02, max depth=6

subsample=0.7, max leaf nodes=8, max features=log2

n iter no change=8

Linear Reg. standard model

Linear Avg. mean of features

47

Classification Architecture Parameters

Logistic Reg. no dropout, outputs counts=4, no L1, no L2

NN Cls. small layers[8,8], dropout=0.5, no L1, no L2

NN Cls. medium no reg layers[16,16,16], no dropout, no L1, no L2

NN Cls. medium w reg layers[16,16,16], dropout=0.3, L1=0.002, L2=0.002

3.1.3 Performance Correlation of Baselines

The construction and subsequent selection of these heterogeneous configurations were

developed in parallel with the refactoring and optimization of the Random Search. It

was necessary to modify the exploration algorithm to enable the execution of Random

Search with models of different natures and various types of feature masks, in order to

obtain the desired pool of weak learners. Below, the correlation between all Baselines

will be shown, measured on the same dataset used for testing and production.

Figure 3.7: Performance Correlation between Baselines

48

4. Selection on Ensemble

After completing the Random Search, a set of weak learners consisting of hundreds

of jobs is obtained (depending on how the exploration pool is configured). These will

serve as the building blocks to select a smaller number of jobs that will establish the

final ensemble, which will then be used to generate predictions and produce customers

strategies. Currently, there is a well-defined process for selecting the weak learners

within the pool:

1. Aggregate Predictions: using ad-hoc script, from a specific pool ID, an .hdf

file is generated that will contain the aggregated predictions (each contained into

Pandas DataFrame) of the individual weak learners. This type of file is a kind of

big dictionary of dataframes, each corresponding to a specific job accessible using

relative Job ID (key).

2. Select Ensemble on predictions: starting from .hdf file generated in the

previous step, a Greedy selection algorithm (explained later) is executed,

with the goal of selecting the weak learners where maximized a desired metric in

a specific data split (e.g cv).

3. At the end of this process, the Greedy Algorithm produce a JSON file containing

all the ids of the selected weak learners, ready to produce signals for strategies.

4.1 Limitations

This process is crucial for generating strategies, as the extraction of the most predictive

weak learners depends on its effectiveness. The main limitation of this process lies

within the selection algorithm itself: being a greedy algorithm, it repeatedly iterates

over all available jobs, calculating the desired metric and selecting the candidate that

maximize metric when combined with those previously selected. This procedure is very

slow and time consuming (e.g. under certain conditions, it requires dozens of hours),

50

primarily due to the huge size of the HDF file, the number of weak learners to be

selected and the metrics computation (also their implications).

4.2 Greedy Algorithm

Algorithm 1 Greedy Selection on Ensemble
Require: specify max ensemble size

chosen ids = list()

ensemble test metrics = list()

for i in max ensemble size do

available candidates = get ids from hdf()

if len(available candidates) == 0 then

break

else

best metric cv = −np.inf

metric test = −np.inf

for candidate id in available candidates do

ensemble dataframe = build df from hdf()

candidate metrics cv = evaluate ensemble(ensemble dataframe)

candidate metrics test = evaluate ensemble(ensemble dataframe)

if candidate metrics cv > best metric cv then

best id = candidate id

best metric cv = candidate metrics cv

metric test = candidate metrics test

chosen id.append(best id)

ensemble test metrics.append(metric test)

51

Main steps of the algorithm:

1. Required max ensemble size: number of maximum weak learner obtained at the

end of selection.

2. Each time, obtain the available candidates from HDF file (list of ids).

3. If there are available candidates, for each of those: compute metrics on cv and

test data split and check if metrics just obtained are better than the current best.

4. At the end of candidates evaluation, save the candidate best id and update metrics

on test.

In particular, this algorithm optimize on cv and select on test. During the execution,

the chosen ids are the weak learner that represent the ensemble; for this reason, each

candidate will be added and evaluated (on metrics calculation) into the ensemble (so

aggregated with other chosen members) and will be chose only if the new ensemble

metrics is higher than the previous.

To obtain the ensemble (aggregated) data used during the evaluation, the algorithm

retrieve and concatenate from HDF file each dataframe associated to an id in the

chosen ids list.

4.2.1 Key objective

Due to limitations, i focused on trying to speeding up the current execution time of

the algorithm by analyzing the main bottlenecks through code profiling and attempt-

ing to implement potential solutions that could improve execution and computation;

since this process run into dedicated cluster, performance analisys were made locally

with a restricted HDF file (small number of weak learner) and low max ensemble size

parameter, consequence of limited hardware resources.

52

4.2.2 Performance Analysis on time execution

In order to find bottleneck, a first analisys were made using SnakeViz tool, on five Jobs

HDF using max ensemble size of four. As shown below, during the entire execution of

greedy selection, the build df from hdf() function takes around of 60% of the execution

time. This is due to the fact that, for each candidate in the list of available ones, the

respective dataframe (from the HDF) containing the predictions of the weak learner

is repeatedly read, the metrics are calculated with the ensemble members, and if the

candidate is not included in the chosen ids, it will continuously be read and evaluated

multiple times (during the achievement of max ensemble size). Assuming there are 100

jobs and a max ensemble size of 25 jobs, for each non-selected candidate, 25 reads of

the same dataframe from the HDF will be performed (at least 75 jobs each 25 times

will be read).

Figure 4.1: Profiling greedy selection on five job

The evaluate ensemble function cover the remaining time of execution, due to metrics

calculation with specific methods (already optimized).

53

4.2.3 Performance Analysis on resources

Metrics function use aggregate data obtained from the ensemble dataframe: this dataframe

is a concatenation of single dataframe (retrieved from HDF) related to chosen ids with

candidate id. For this reason the process of metrics evaluations is slow and during the

execution gets worst when ensemble size increase: this behaviour is a consequence of the

fact that there are repeated informations into columns that lead to increasing memory

(RAM) occupation; moreover, on this huge dataframe will be performed some group by

operation (where the execution time is strictly related to dataframe size) in order to

obtain a single dataframe for evaluation.

4.3 Optimization Proposal

Identified the main bottleneck in the algorithm’s execution, the focus was on finding a

solution to speed up the algorithm without modifying the selection process, specifically

the greedy selection, to avoid a radical change in the selection methodology and conse-

quently the associated metrics. Since each Job (i.e weak learner) is always read at least

once, the main idea is to create a pre-build dataframe (global dataframe) containing

the relevant useful information for each job: in this manner, all data used for ensemble

evaluation are preloaded and ready to use in each iteration, instead of repeated reading.

Global Dataframe from scratch

The procedure to create global dataframe is:

1. Create an initial global dataframe of fixed information: all the information shared

across all jobs (e.g date, asset ids, split period and ground truth labels)

2. Since the predictions vector from each weak learners will be primarily useful for

evaluating the ensemble, the idea is to retrieve this data and group it as needed

for metric calculations.

3. For each job, read the related dataframe into HDF file, getting the predictions

54

vector of the weak learner, compute required groupby operations and merge this

data within base dataframe previous build.

4. In this manner, only the prediction vector will be added to global dataframe as

a column named as relative Job ID (without repeating shared information).

Figure 4.2: Jobs Predictions Vector on Greedy optimization

Once all the prediction vectors have been extracted and merged with the common

columns for all jobs, the global dataframe is split into cross-validation and test sets

according to the data split; this makes the dataframe used for metric calculations on a

specific subsample of the data even more manageable.

Prepare Data for Metrics Computations

When the global dataframe has been created, the evaluate ensemble procedure start: in

the first iteration, all the available candidates will be individually evaluated in order

to find the candidate which provide the best metric on cv data split (first member of

ensemble). Instead of using the previous candidate dataframe and concatenating each

dataframe for next comparison, the chosen IDs will be saved: in the following iterations

the data will be retrieved from the global dataframe using only the corresponding

column name, which is the Job ID.

55

Since data are already grouped, ensemble ids (chosen) and relative prediction vector

will be averaged on row axis and next evaluated with the candidate prediction vector.

4.3.1 Memory Consumption Comparison

The old dataframe management (using concatenation) involved to an increase in re-

source usage as the algorithm increased the ensemble size: this was because, once a

candidate was selected and added to the ensemble, the dataframe for metric calculation

permanently contained its data, which was then concatenated with the data of each

candidate during comparison. As the ensemble size grew (up to the maximum ensemble

size), this procedure allowed for the concatenation of dozens of dataframes.Performing

local tests, with an ensemble size of five jobs, the RAM consumption was approximately

3.5 GB for the dataframe (for an ensemble size of 20, it would become approximately

10 GB); which is why, locally, with an HDF file consisting of more than ten jobs, the

execution runs out of memory.

By utilizing the global dataframe containing all pre-loaded data, the memory savings

were significant even locally, allowing tests to be executed with up to 25 jobs (compared

to 10 locally) and avoiding issues related to max ensemble size (since all dataframes

have already been read and processed to obtain the prediction vectors used). The global

dataframe alone, build during the first phase of execution using an HDF of 100 jobs,

weighs only 5 GB. This produce considerable savings on cluster side, where the selection

process is usually executed.

56

4.3.2 Execution Time Benchmarking

In this section will be shown tests performed locally to conduct a comparative analysis

between the previous version of the code and the optimized version according to my

proposal, by varying the number of jobs (and therefore the size of the HDF file) but

keeping the same max ensemble size parameter (to maintain the same number of global

iterations, so increasing the number of jobs will only increase the number of candidates

and comparisons between them).

Figure 4.3: OLD - Execution time on five Jobs

Figure 4.4: NEW - Execution time on five Jobs

Point of analysis (5 Jobs) Old Version New Version Time Savings

Entire execution 296s 220s 25%

Greedy selection 215s 129s 40%

Build df from hdf 131s 34s 74%

As shown in the table on 5 jobs execution (old vs new) provide an overall performance

improvement of 25% (considering the execution time of built-in functions and the time

required to compute metrics in evaluate ensemble, which cannot be optimized). Regard-

ing the performance of the greedy algorithm alone, a time saving of 40% was achieved

57

with the new dataframe management. Additionally, there is a significant time saving

in reading from HDF (previously done with build df from hdf()), which now takes 34

seconds to build the global dataframe.

4.3.3 Scaling on Jobs number

Figure 4.5: Execution time on five Jobs

Figure 4.6: Execution time on ten Jobs

Figure 4.7: Execution time on twenty Jobs

Without the functions on which optimization cannot have an effect (e.g. evaluate en-

semble used for metric calculation and filter jobs for removing any incompleted jobs),

58

the greedy algorithm shows an increase of 105 seconds from 5 to 10 jobs and 109 sec-

onds from 10 to 20 jobs. This data indicates a trend that appears to be linear with

jobs increase, contrary the previous version which seemed to go towards a quadratic

trend (also considering the high number of execution hours) due to the high and incre-

mental use of computational resources required, which inevitably cause a slowdown in

performance.

4.3.4 Global Performance Running on cluster

At the end of development and review of Greedy Optimization, an optimized select

ensemble was executed on Axyon cluster using the same parameters as the last selection.

Below, the total duration of the two select ensembles (optimized and non-optimized)

running on high-performance hardware.

Figure 4.8: Old Select Ensemble Figure 4.9: Optimized Select Ensemble

These tests were both executed with the same HDF file of 100 Jobs, the same max

ensemble size parameter and the same dataset on which the individual weak learners

were trained. From the overall duration of both versions, it is evident that the opti-

mization led to an approximately 8x improvement in performance with related benefits

on memory consumption.

59

5. Diversity

Diversity problem is a ”holy grail” in Ensemble Learning since many years. Another

certainty in ensembles is that works better with learners that have ”diversity” in pre-

dictions; building on base concept behind Ensemble Learning, it guarantees an ’average

out’ of individuals errors. This chapter will detail studies and research to achieve and

obtain a specific measure of diversity within our heterogeneous ensemble. Although it

remains an open problem, the primary difficulty encountered in the literature lies in

adapting certain proposed methodologies to the context of Learning to Rank used into

Axyon’s process.

During the literature review phase, the key reference became the paper [5], which

compiles all the studies conducted over the past 25 years on the topic of diversity.

On this side, literature is divided into two macro-categories:

1. maximization of diversity as an optimization problem.

2. quantify and manage diversity as a measure of models fit.

5.0.1 Preface

We are looking for a definition of diversity as a measure of disagreement between en-

semble weak learners. Using the paper [5] as a reference, it is evident how, over the

years, the concept of ”diversity” has evolved into a various idea linked to a totally open

problem. Supported by the theoretical studies of previous years, the authors followed

the approach of revealing that diversity is a hidden dimension within the bias-variance

decomposition and can be quantified as a measurable aspect of model training, thus it

depends to the loss.

61

5.1 Bias-Variance-Diversity Decomposition

In the [5] approach, authors use the same methodology for many different losses in

classification and regression scenarios.

Given an ensemble of {qi}m
i=1, combined by centroid combiner:

q = argminz∈Y [1
m

m∑
i=1

l(z, qi)]

using any loss l, the expected risk of the ensemble:

ED[R(q)] = R(y∗)︸ ︷︷ ︸
noise

+ 1
m

m∑
i=1

[R(q̇i)−R(y∗)]︸ ︷︷ ︸
bias

+ 1
m

m∑
i=1

ED[R(qi)−R(q̇i)]︸ ︷︷ ︸
variance

−ED[1
m

m∑
i=1

[R(qi)−R(q)]]︸ ︷︷ ︸
diversity

we have four terms: noiose and effects of bias, variance and diversity. Thus, as diver-

sity effect increases, it reduces expected risk but may potentially take negative values

because it is simply the difference between average risk and ensemble risk, so when

ensemble performs worse than the average, this will be negative; all of these terms can

be estimated from data.

5.1.1 Squared Loss

Considering l(y,q) = (y − q)2, which implies:

• q = 1
m

∑m
i=1 qi

• q̇ = ED[q]

The decomposition at each test point (x, y) is:

ED[(q −y)2] = 1
m

m∑
i=1

[(q̇i −y)2]︸ ︷︷ ︸
bias

+ 1
m

m∑
i=1

ED[(qi − q̇i)2]︸ ︷︷ ︸
variance

−ED[1
m

m∑
i=1

[(qi − q)2]]︸ ︷︷ ︸
diversity

62

The autors of [5], shows an experiment using the squared error in a Bagged regression

trees, increasing before the ensemble size and after the maximum depth:

Figure 5.1: Bagging increasing ensemble size

As shown in 5.1, ranging the ensemble size, the expected risk decrease until the average

bias: however the average bias and average variance are constant; in contrast, the

diversity term increases with m-subtracting from the expected risk so the improvement

obtained from the expected risk is determined entirely by diversity.

Figure 5.2: Bagging increasing maximum depth

In 5.2, varying the maximum depth of regression trees, we have a bias-variance-diversity

trade-off because all of the three components change.

63

5.1.2 Estimating Bias, Variance and Diversity

In order to estimate three components, the authors of [5] employs concept of trial: the

centroid q̇i is estimated based on the clones of the single model extracted from the

trials.

Figure 5.3: Estimating Components on [5]

Since we use Random Search to obtain weak learners pool, the concept of trials is not

applicable within our applications: for this reason, we can approximate the centroid

for model i on a single test point x on trial t (q̇i
t) as the predictions of the single weak

learner. The result of this applied to squared loss:

ED[(q −y)2] = 1
m

m∑
i=1

[(qi −y)2]︸ ︷︷ ︸
bias

−ED[1
m

m∑
i=1

[(qi − q)2]]︸ ︷︷ ︸
diversity

where q:

q = 1
m

m∑
i=1

qi

Without considering q̇t
i , in our applications we cannot esitmate variance therm and, due

to this, we can assume the variance constant. For what concern bias, is obtained with

mean squared error between predictions of weak learner and ground truth; diversity

therm instead, is obtained computing mean squared error between weak learner and

the mean of predictions to the remaining weak learners into the pool.

64

5.2 MSE vs. Spearman Correlation: Relationship

Once the aggregation phase of predictions is completed, each model produces a ranked

vector of predictions (both for classification and regression problems). This vector is

used to measure the quality of predictions respect to the ground truth: to do this the

Spearman Rank Correlation is computed. In this section will be detailed steps to

investigate how the adapted squared error (inspired by [5]) behaves in relation to Spear-

man Correlation Coefficient, typically used into the ensemble evaluation procedure.

5.2.1 Components

Having a pool of 100 jobs:

1. Considering each time the ensemble made up of all the jobs except the one under

analysis.

2. Without considering variance therm (5.1.2).

3. Using before the Mean Squared Error and after the Spearman Correlation Coef-

ficient, into cv and test subset of data will be computed and evaluated:

• bias: 1
m

∑m
i=1[(qi −y)2]

• diversity: 1
m

∑m
i=1[(qi − q)2]]

obtaining a single vector for each component related to Mean Squared Error and

Spearman Coefficient.

We want to confirm with certainty whether the relationship between MSE and Spear-

man Rank Correlation is inversely correlated (as expected) or not, into our use-cases.

65

5.2.2 Diversity Therm

Averaging all the vectors obtained from MSE and Spearman Correlation computations,

it can be observed:

Figure 5.4: MSE vs Spearman Correlation - Diversity Therm

From these matrices, it can already be seen how the two metrics are inversely related:

high MSE values indicate low Spearman Correlation values. To be more specific:

Figure 5.5: MSE/Spearman Diversity Visualization

Computing the correlation between values of two matrices yields: -0.976

66

5.2.3 Bias Therm

Averaging all the vectors obtained from MSE and Spearman Correlation computations,

for Bias therm:

Figure 5.6: MSE vs Spearman Correlation - Bias Therm

Analyzing the values within these matrices and considering that values are related to

the bias term, it has been observed that some jobs collapsed during the training and

aggregation phase. Considering the mean standard deviation of the entire pool, it is

possible to identify and remove all the jobs under a certain threshold (e.g 4%) of single

standard deviation. The representation before and after removing the collapsed jobs

will be shown.

Figure 5.7: Before Figure 5.8: After

Figure 5.9: MSE/Spearman Bias Visualization

67

Computing the correlation between values of two matrices (removing collapsed jobs)

yields: -0.970.

5.3 Metric Conclusion

Using the tests conducted on the relationship between the two metrics, it can be demon-

strated that the two metrics are almost perfectly inversely correlated; this is the desired

result, which allows the metric to be used to measure and quantify diversity within each

pool of weak learners. In addition, with [5] is also demonstrated that diversity can be

seen as a hidden dimension in the bias-variance decomposition of an ensemble loss;

the exact functional form is specific on the loss being used, but the common structure

applicable for any losses is:

expected loss = (average bias)+(average variance)− (diversity)

68

6. Experiments on New Dataset

After the completion of the Random Search algorithm, the select ensemble procedure

produce a JSON file containing the selected jobs on the entire pool of weak learners.

In this section will be detailed some results and experiments conduct on a different

dataset, at the end of strategy production process maximizing the usual metric.

Performance Correlation of Selected Jobs

Figure 6.1: Selected Jobs Correlation

Figure 6.2: Distribution of Performance Correlation Values

70

Predictions of Selected Jobs through time

Figure 6.3: Selected Jobs Predictions

Diversity of Selected Jobs

Figure 6.4: Diversity Selected Jobs

71

Once obtained the selected jobs, the same pipeline was executed by introducing the

previously explained diversity metric into the selection process, on the same dataset

and using the same parameters for the algorithm.

Performance Correlation Selected Jobs Using New Metric

Figure 6.5: Selected Jobs Correlation - New Metric

As shown in 6.5 and 6.1, five jobs (out of ten) from those selected with the new metric

are also present among those selected with the old metric.

Figure 6.6: Distribution of Performance Correlation Values - New Metric

72

Predictions of Selected Jobs through time New Metric

Figure 6.7: Selected Jobs Predictions using New Metric

Diversity of Selected Jobs - New Metric

Figure 6.8: Diversity Selected Jobs using New Metric

73

Table 6.1: Bias and Diversity - Selected Jobs vs Entire Pool

Metric Selected Jobs Entire Pool

Mean Diversity (MSE) 0.08112 0.06762

Mean Bias (MSE) 0.15886 0.16384

Table 6.2: Bias and Diversity - Selected Jobs vs Entire Pool using New Metric

Metric Selected Jobs Entire Pool

Mean Diversity (MSE) 0.08701 0.06762

Mean Bias (MSE) 0.16164 0.16384

Comparing Tables 6.1 and 6.2, it can be observed that the jobs selected with the new

metric have a higher diversity term than those selected with the old metric, while

the bias term is also slightly higher. Additionally, the difference between bias and

diversity for the jobs selected with the new metric is lower compared to that for the

jobs selected with the old metric.

By adding this metric and using it to select the jobs within the ensemble (not just as an

intrinsic measure of the terms), it was possible to obtain an ensemble of weak learners

that are more diverse compared to those obtained with the existing metrics. This is

notable considering that the tests conducted on this dataset were based on a Random

Search of 100 elements, which is smaller than those typically performed (sometimes up

to 500 weak learners) so having a smaller range of possibilities compared to usual.

74

Conclusions and Further Improvements

Through my thesis project, I was able to contribute to the new strategy production

process at Axyon; this allowed for the integration of new features with some improve-

ments within the tools used, while at the same time opening new avenues for research

and further improvements. With the obtained results, we were able to create heteroge-

neous ensembles and introduce a considerable level of diversity within the pool of weak

learners by using the tools provided by Random Search integrated with Optuna. The

analysis of the selection process results, conducted using the diversity metric, revealed

that although the selected weak learners present some differences, the diversity remains

limited within the pool.

This observation leads us to consider that the current approach has inherent limita-

tions. Currently, the generation of weak learners during the exploration phase, is based

on models trained on the entire time period of the data. This approach is limiting not

only because the entire time period is treated as a single block during the algorithm, but

also because the number of weak learners generated may not be sufficient to effectively

explore the entire solution space and identify the best individuals. As a result, there is

a risk of not achieving the optimal level of diversity and quality within the pool.

A possible solution to this problem lies in the adoption of a metaheuristic approach.

By training weak learners on specific time intervals, it would be possible to explore the

space incrementally, allowing for the creation of models that are progressively influenced

by previous exploration on reduced time periods. This approach would enable more

targeted and optimized space exploration, where diversity is not just a measure aspect,

but a central parameter driving the entire exploration.

We believe that integrating a metaheuristic approach could significantly improve

the effectiveness of model space exploration, leading to the construction of more robust

and diversified ensembles. As a result, this might improve the chances of identifying

the best weak learners and enhancing overall performance.

76

Bibliography

[1] Yunquian Ma Cha Zhang. Ensemble Machine Learning: Methods and

Applications. 1st ed. 233 Spring Street, New York, NY 10013: Springer New York,

2012. isbn: 978-1-4419-9325-0.

[2] M.Wahde. Biologically Inspired Optimization Methods. 1st ed. 25 Bridge Street,

Billerica, MA 01821, USA: WIT Press, 2008. isbn: 978-1-84564-148-1.

[5] Danny Wood et al. A Unified Theory of Diversity in Ensemble Learning. 2024.

arXiv: 2301.03962 [cs.LG]. url: https://arxiv.org/abs/2301.03962.

Online Sources

[3] OptunaFramework. Documentation. url:

https://optuna.readthedocs.io/en/stable/index.html.

[4] Scikit-Learn. API. url:

https://scikit-learn.org/stable/api/index.html.

[6] XGBoost. Documentation. url:

https://xgboost.readthedocs.io/en/stable/index.html.

78

https://arxiv.org/abs/2301.03962
https://arxiv.org/abs/2301.03962
https://optuna.readthedocs.io/en/stable/index.html
https://scikit-learn.org/stable/api/index.html
https://xgboost.readthedocs.io/en/stable/index.html

Acknowledgments

I want to sincerely thank everyone who has supported me during this journey. My

deepest gratitude goes to my family for their love and support, which has been crucial

in helping me reach this milestone. I also want to thank my friends for always being

there for me, providing encouragement and companionship.

A special thanks to my colleagues at Axyon, especially the ML Team Alessandro, Gio-

vanni, Alberto, and Jacopo for believing in me, giving me the chance to work on this

project, and continuing my career in such an inspiring and amazing environment.

I am incredibly grateful to my partner, Carlotta, whose constant love, patience, and

encouragement have been a source of strength throughout this journey. Her belief in

me, even during the most challenging moments, has been invaluable, and I could not

have completed this work without her support.

Finally, not least in importance, I would like to thank prof. Simone Calderara, my

supervisor, for his valuable guidance and mentorship during this project and my studies.

79

	Introduction
	Business Context
	Ensemble Learning
	Ensemble Intuition
	Ensemble Taxonomy
	Bagging
	Boosting
	Stacking
	Bias Variance trade-off

	Genetics Algorithms
	Random Search Algorithms
	Exploration vs Exploitation
	Motivations

	Road to new Random Search
	One-to-One Porting
	Principal Components
	Flow Chart Old Version
	Policy Random

	Refactor Components
	Optuna Framework
	Routine Types
	Flow Chart Optimized Random Search

	Baselines Models
	Architectures and Methodologies
	Analysis
	Selected Configurations
	Performance Correlation of Baselines

	Selection on Ensemble
	Limitations
	Greedy Algorithm
	Key objective
	Performance Analysis on time execution
	Performance Analysis on resources

	Optimization Proposal
	Memory Consumption Comparison
	Execution Time Benchmarking
	Scaling on Jobs number
	Global Performance Running on cluster

	Diversity
	Preface
	Bias-Variance-Diversity Decomposition
	Squared Loss
	Estimating Bias, Variance and Diversity

	MSE vs. Spearman Correlation: Relationship
	Components
	Diversity Therm
	Bias Therm

	Metric Conclusion

	Experiments on New Dataset
	Conclusions
	Acknowledgments

