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Anomaly detection, anche conosciuta come outlier detection, è un processo che trova
molteplici applicazioni, come ad esempio l’antiriciclaggio di denaro, la rilevazione di
malattie rare, l’analisi dei social media e la segnalazione di intrusioni. In particolare, gli
algoritmi di anomaly detection hanno lo scopo di individuare istanze che si discostano in
modo significativo dalla maggior parte dei dati. L’argomento centrale di questa tesi è
anomaly detection su serie temporali. Nel corso degli ultimi mesi, ho svolto un tirocinio
curriculare presso Axyon AI, dove ho condotto ricerche e sperimentazioni che
costituiscono la base di questo elaborato. Axyon AI collabora con gestori patrimoniali e
fondi per fornire strategie di investimento basate sull’intelligenza artificiale, applicando il
deep learning su serie temporali finanziarie. Tuttavia, il mercato finanziario è
caratterizzato da cambiamenti continui nel tempo, il che può far sì che le prestazioni dei
modelli supervisionati possano degradarsi e diventare meno affidabili. L’obiettivo
principale di questo progetto è stato quello di sviluppare un detector di anomalie non
supervisionato capace di stimare la confidenza della previsione. A tal fine, sono stati
allenati in parallelo un classificatore e un detector utilizzando sia dati contaminati che
dati puliti. L’anomaly detector è stato sviluppato con due modelli differenti, il Gaussian
Mixture Model e successivamente un Variational Autoencoder. A seguire, è stato
ricercato un legame tra lo score di uscita del classificatore e quello del detector. Una volta
stabilita una significativa correlazione tra questi due score, è possibile utilizzarli tramite
la regola di Bayes per ottenere uno score di confidenza della previsione. Questa tesi è
suddivisa in cinque capitoli. Il primo capitolo offre un’introduzione al problema, al
contesto in cui è stato affrontato e alle motivazioni che hanno portato alla realizzazione
degli esperimenti. Il secondo capitolo presenta a livello teorico gli argomenti trattati e
affrontati nella fase sperimentale. Nel terzo e quarto capitolo, si approfondiscono i metodi
utilizzati e i risultati ottenuti. Infine, nel quinto capitolo, vengono presentati i
miglioramenti che possono essere fatti per ottenere risultati più promettenti, basati sulle
osservazioni ottenute dai risultati ottenuti durante la ricerca.
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Summary

Anomaly detection, which is also known as outlier detection, is a task with numerous ap-
plications, including anti-money laundering, rare disease detection, social media analysis ,
and intrusion detection. Anomaly detection algorithms aim to identify data instances that
deviate significantly from the majority of data objects. The central topic of this thesis is
anomaly detection performed on time series. For the past few months, I have been an intern
at Axyon AI. Axyon AI partners with asset managers and hedge funds to deliver consis-
tently high-performing AI-powered investment strategies by leveraging its proprietary, fully
automated deep learning technology for financial time series. Supervised learning models
are trained to find patterns and regularities in the data in order to predict a future value.
Supervised models are able to make predictions about data that have never been seen,
because they extract knowledge from patterns and regularities in the data on which they
are trained. Financial market is subject to frequent mutations over time, for this reason the
performance of a supervised model may not be reliable in prediction. The main goal of this
work is to develop an unsupervised anomaly detector capable of estimating prediction con-
fidence. A classifier and an anomaly detector were trained simultaneously, using clean data
and contaminated data. To be more specific, After this training phase, the focus shifted to
looking for a correlation between the score coming out of the classifier and the score coming
out of the detector. The anomaly detector was developed with two different models, first
Gaussian Mixture model, later Variational Autoencoder. Given these two scores, through
Bayes’ rule, a confidence score of the prediction would be calculated. Given the confidence
score, one could discard the points with a low confidence score to denoise the classifier or
simply notify these points as edge cases in the classification problem. The thesis is orga-
nized in five chapters. The first one is an introduction to the problem, the context in which
the problem is addressed, and the reasons behind the development of the experiments. The
second one refers to the literature review of the topics covered throughout the work. In
the third and fourth I go into the merits of, respectively, the methods followed and the
results obtained. Given the observations made on the results, the last chapter presents the
improvements that could be made to obtain more promising results.

v



Contents

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Context and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review 3
2.1 Anomaly detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Types of time series anomalies . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Latent anomaly detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 Latent variable models . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 Gaussian Mixture Models . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.3 Variational Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Time series analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Trend estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Extraction of features . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Confidence calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Method 16
3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Synthetic noise injection . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Classifier training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 Anomaly detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.5 Class-conditioned likelihood estimation . . . . . . . . . . . . . . . . 23
3.2.6 Classifier re-training . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Results 25
4.1 First Attempt: Gaussian Mixture Model on features extracted from time series 25

4.1.1 Mix 90-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Mix 80-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.3 Mix 70-30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



4.1.4 Mix 60-40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.5 Observations on first attempt . . . . . . . . . . . . . . . . . . . . . 36

4.2 Second Attempt: Noise injection on features extracted . . . . . . . . . . . . 37
4.2.1 Mix 80-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Mix 70-30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.3 Mix 60-40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.4 Observations on second attempt . . . . . . . . . . . . . . . . . . . . 43

4.3 Third Attempt: Analysis on time series . . . . . . . . . . . . . . . . . . . . 43
4.3.1 Mix 90-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Mix 80-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3 Mix 70-30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.4 Mix 60-40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.5 Observations on third attempt . . . . . . . . . . . . . . . . . . . . . 50

4.4 Fourth Attempt: Variational Autoencoder on features extracted . . . . . . 50
4.4.1 Mix 85 - 15 with noise injection before features extraction . . . . . 51
4.4.2 Mix 80 - 20 with noise injection after features extraction . . . . . . 51
4.4.3 Observations on fourth attempt . . . . . . . . . . . . . . . . . . . . 52

5 Conclusions and future improvements 54
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Future improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vii



List of Figures

2.1 Global outliers example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Contextual outliers example . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Collective outliers example . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Gaussian mixture model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Variational autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Reparameterization trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 FRESH Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Univariate time series from MIT-BIH Arrythmia dataset . . . . . . . . . . 17
3.2 Features extraction on time series . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 MLP Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Variational Autoencoder architecture . . . . . . . . . . . . . . . . . . . . . 23

4.1 Model 90-10 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Model 80-20 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Model 70-30 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Plot of correlation 70-30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Model 70-30 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Plot of correlation 70-30 test set all contaminated . . . . . . . . . . . . . . 32
4.7 Model 60-40 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.8 Plot of correlation 60-40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.9 Model 60-40 results test set all contaminated . . . . . . . . . . . . . . . . . 35
4.10 Plot of correlation 60-40 test set all contaminated . . . . . . . . . . . . . . 36
4.11 Model 80-20 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.12 Plot correlation 80-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.13 Model 70-30 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.14 Plot correlation 70-30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.15 Model 60-40 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.16 Plot correlation 60-40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.17 Model 90-10 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.18 Correlation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.19 Model 80-20 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.20 Correlation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.21 Model 70-30 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.22 Correlation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

viii



4.23 Model 60-40 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.24 Correlation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.25 Comparison of original data distributions with generated data distributions 53

ix



List of Tables

3.1 Classifier results when trained and tested on mixed data . . . . . . . . . . 20
3.2 Classifier results when trained on mixed data and test on all contaminated

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Mean correlation table 90-10 . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Mean correlation table on 80-20 test set all contaminated . . . . . . . . . . 28
4.3 Correlation 70-30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Correlation test set all contaminated . . . . . . . . . . . . . . . . . . . . . 31
4.5 Correlation 60-40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Correlation 60-40 test set all contaminated . . . . . . . . . . . . . . . . . . 35
4.7 Mean correlation table 80-20 . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.8 Mean correlation table 70-30 . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.9 Mean correlation table 60-40 . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.10 Mean correlation table 90-10 . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.11 Mean correlation table 80-20 . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.12 Mean correlation table 70-30 . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.13 Mean correlation table 60-40 . . . . . . . . . . . . . . . . . . . . . . . . . . 49

x



Chapter 1

Introduction

1.1 Context and Motivations
Time series are used in a large number of fields such as industrial control systems,
finance, and healthcare. Time series and their analysis are becoming increasingly
important due to the massive production of these data. Time series analysis is a specific
way of analysing a sequence of data points collected over an interval of time. Time is a
crucial variable because it shows how the data adjusts over the course of the data points
and it provides an additional source of information and a set order of dependencies
between the data. Time series analysis typically requires a large number of data points to
ensure consistency and reliability. An extensive data set ensures that any trends or
patterns discovered are not outliers and can account for seasonal variance.
Detecting unexpected behaviours or patterns that do not conform to the expected
behaviour is an active research discipline called anomaly detection in time series.
Anomaly detection is an important field. It consists in detecting rare events or, more
generally, observations that are aberrant and different from the majority of data. These
rare events can be of various types and they are present in multiple and different domains
(fraudulent financial transactions, medical problems or network intrusions). Detecting
these rare events is a major issue for many fields.
In the first place this thesis focuses on the critical task of anomaly detection. Specifically,
it focuses on a subset of time series anomaly detection methods, which is unsupervised
detection. Unlike supervised detection, unsupervised detection methods do not require a
label associated with the data samples. The ultimate goal is to obtain, through the
implementation of anomaly detection, a calibrated classifier that can make a prediction
with the right level of confidence.
Calibration is comparison of the actual output and the expected output given by a
system. In a calibrated model the distribution and the behaviour of the probability
predicted is similar to the distribution and behaviour of probability observed in training
data. Confidence calibration is defined as the ability of some model to provide an
accurate probability of correctness for any of its predictions. Such calibrated confidence
scores are important in various “high-stakes” applications where incorrect predictions are
extremely problematic (e.g., self-driving cars, medical diagnosis, etc.), as calibrated
probability scores associated with each prediction allow low-quality predictions to be

1



1 – Introduction

identified and discarded.

1.2 Contributions
The work explained in this thesis was developed during the curricular internship at
Axyon AI. Axyon AI is a fintech company with a mission to bring AI-powered predictive
value to the investment management industry. Axyon partners with asset managers and
hedge funds to deliver consistently high-performing AI-powered investment strategies by
leveraging its proprietary, fully automated AI/deep learning technology for financial time
series. The goal of the work in Axyon AI was to deepen and research the topic of
anomaly detection, experiment on the data and models they already used, in order to be
able to improve the confidence of the predictions made by their model.

1.3 Structure of the Thesis
This thesis is structured as follows:

• The current chapter, i.e., the first chapter, is an introductory chapter in which I
introduce the background and motivation behind this project.

• The second chapter reviews the literature on each of the topics and methodologies
applied and developed in the experimental phase of the project.

• The third chapter presents the method and mode used in the pilot phase of the
project.

• The fourth chapter presents the results obtained in the various steps.

• The last chapter presents final observations consequent to the results obtained and
possible future approaches and improvements to the central topic of this project.

2



Chapter 2

Literature Review

2.1 Anomaly detection
An anomaly can be defined as an observation that is unexpected with respect to a set of
other pre established observations considered as normal. More formally, in a set D
containing n observations noted xi , then xp ∈ A will be considered as abnormal if it
differs, by its characteristics, from the other observations. The definition of the term
anomaly is specific to the use case. The most common one in the field of detection is an
observation which is different from the others by its singularity: it could result from a set
of rules which are different from the other observations. Anomalies in time series, also
called outliers, are points or sequences of points that do not correspond to normal
behaviour. The concept of normal behaviour is difficult to formalise. Therefore, another
possible definition for anomalies could be a pattern in data that is not expected in
comparison to what has been seen before. In fact, an implicit assumption is that
anomalies are rare events. Anomalies should not be confused with the noise present in the
time series. Anomaly detection refers to the task of identifying an unseen observation xt ,
t > τ , based on the fact that it differs significantly from τ , thus assuming that τ contains
only normal points. The amount by which the unseen sample xt and the normal set τ
differ is measured by an anomaly score, which is then compared to a threshold to obtain
an anomaly label. Three broad categories of anomaly detection techniques exist.

• Supervised anomaly detection techniques require a data set that has been labelled
as "normal" and "abnormal" and involves training a classifier. However, this
approach is rarely used in anomaly detection due to the general unavailability of
labelled data and the inherent unbalanced nature of the classes.

• Semi-supervised anomaly detection techniques assume that some portion of the data
is labelled. This may be any combination of the normal or anomalous data, but
more often than not the techniques construct a model representing normal
behaviour from a given normal training data set, and then test the likelihood of a
test instance to be generated by the model.

• Unsupervised anomaly detection techniques assume the data is unlabelled and are
by far the most commonly used due to their wider and relevant application.

3



2 – Literature Review

In this thesis, only unsupervised techniques of anomaly detection were addressed. The
goal of unsupervised learning is to model the underlying structure or distribution in the
data in order to learn more about the data. In supervised anomaly detection, if we want
a model to be able to detect anomalies, it must characterise the system very precisely
both in normal behaviour and in the presence of anomalies. However, normal behaviours
can be multiple, as well as behaviours in the presence of anomalies. Unsupervised
learning is perfectly adapted to the problem of anomaly detection since it is not necessary
to label large data sets. Moreover, a part of the anomalies come from new behaviours of
the system. By definition, these behaviours could not be correctly classified with
supervised anomaly detection methods.

2.2 Types of time series anomalies
Understanding the types of outliers that an anomaly detection system can identify is
essential to getting the most value from generated insights. Without knowing what you’re
up against, you risk making the wrong decisions once your anomaly detection system
alerts you to an issue or opportunity. Generally speaking, anomalies in data fall into three
main outlier categories — global outliers, contextual outliers, and collective outliers.

• Global outliers: This is the simplest type of anomaly. It corresponds to a point that
differs from the rest of the data.

Figure 2.1: Global outliers example

• Contextual outliers: Also called conditional outliers, these anomalies have values
that significantly deviate from the other data points that exist in the same context.
An anomaly in the context of one dataset may not be an anomaly in another. These
outliers are common in time series data because those datasets are records of
specific quantities in a given period. The value exists within global expectations but
may appear anomalous within certain seasonal data patterns.

Figure 2.2: Contextual outliers example

• Collective outliers: When a subset of data points within a set is anomalous to the
entire dataset, those values are called collective outliers. In this category, individual

4



2 – Literature Review

values are not anomalous globally or contextually. You start to see these types of
outliers when examining distinct time series together. Individual behaviour may not
deviate from the normal range in a specific time series dataset. But when combined
with another time series dataset, more significant anomalies become clear.

Figure 2.3: Collective outliers example

2.3 Latent anomaly detection
In this work, a different approach to anomaly detection has been proposed, the first step
is looking at the latent variable space to make toward anomaly detection. Most
conventional approaches to anomaly detection are concerned with tracking data which
are largely deviated from the ordinary pattern. In this case, the issue is track changes
happening in the latent variable space consisting of the meta information existing behind
observed data.
The key idea is estimates the p(x) of the data using a class-agnostic unsupervised
method, in particular in this work was used Gaussian Mixture Model and Variational
Autoencoder. What is expected is that in case of anomalies the p(x) estimates are higher
than the p(x) estimates for normal data.

2.3.1 Latent variable models
Latent variable modeling refers to a varied group of statistical procedures that use one or
more unobserved (latent) variables to explain and explore relationships between a larger
set of observed variables.
Latent variable models take an indirect approach to describing a probability distribution
Pr(x) over a multi-dimensional variable x. Instead of directly writing the expression for
Pr(x) they model a joint distribution Pr(x, h) of the data x and an unobserved latent (or
hidden) variable h. They then describe the probability of Pr(x) as a marginalization of
this joint probability so that

Pr(x) =
∫

Pr(x, h)dh (2.1)

Typically we describe the join probability Pr(x, h) as the product of the likelihood
Pr(x|h) and the prior Pr(h), so that the model becomes

Pr(x) =
∫

Pr(x|h)Pr(h)dh (2.2)

It is reasonable to question why we should take this indirect approach to describing
Pr(x). The answer is that relatively simple expressions for Pr(x|h) and Pr(h) can describe
a very complex distribution for Pr(x).

5
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2.3.2 Gaussian Mixture Models
A well known latent variable model is the mixture of Gaussians, a weighted sum of C
Gaussian components.

p(x|θ) =
C∑

c=1
πcN(x|πc, Σc) (2.3)

πc,µc and Σc are are the weight, mean vector and covariance matrix of mixture
component c, respectively. The weights are non-negative and sum up to 1 i.e.∑C

c=1 πc = 1. Parameters vector θ = π1, µ1, Σ1, ..., πc, µc, Σc denotes the set of all model
parameters. If we introduce a discrete latent variable t that determines the assignment of
observations to mixture components we can define a joint distribution over observed and
latent variables p(x, t|θ) in terms of a conditional distribution p(x|t, θ) and a prior
distribution p(t|θ)

p(x, t|θ) = p(x|t, θ)p(t|θ) (2.4)

dove p(x|tc = 1, θ) = N(x|µc, Σc) and p(tc = 1|θ). The marginal distribution p(x|θ) is
obtained by summing over all possible states of t.

p(x|θ) =
C∑

c=1
p(tc = 1|θ)p(x|tc = 1, θ) =

C∑
c=1

N(x|µc, Σc) (2.5)

For each observation xi we have one latent variable ti, as shown in the following plate
notation of the model.

Figure 2.4: Gaussian mixture model

We denote the set of all observations by X and the set of all latent variables by T . If we
could observe T directly, we could easily maximize the complete-data likelihood p(X, T |θ)
because we would then know the assignment of data points to components, and fitting a
single Gaussian per component can be done analytically. But since we can only observe
X, we have to maximize the marginal likelihood or incomplete-data likelihood p(X|θ). By

6



2 – Literature Review

using the logarithm of the likelihood we have
θMLE = argmax

θ
logp(X|θ) = argmax

θ
log

∑
T

p(X, T |θ) (2.6)

which involves a summation over latent variables inside the logarithm. This prevents a
simple analytical solution to the optimization problem.
Expectation maximization algorithm
Although we cannot observe latent variables directly, we can obtain their posterior
distribution. We start with a preliminary parameter value θold.

p(T |X, θold) = p(X|T, θold)p(T |θold)∑
T p(X|T, θold)p(T |θold) (2.7)

This allows us to define an expectation of the complete-data likelihood w.r.t. to the
posterior distribution.

Q(θ, θold) =
∑
T

p(T |X, θold) log p(X, T |θ) = Ep(T |X,θold) log p(X, Tθ) (2.8)

This expectation is then maximized w.r.t. to θ resulting in an updated parameter vector
θnew.

θnew = argmax
θ
Q(θ, θold) (2.9)

In eq.(2.8) the summation is outside the logarithm which enables an analytical solution
for θnew in the case of GMMs. We then let θold ← θnew and repeat these steps until
convergence. This is the essence of the expectation maximization (EM) algorithm. It has
an expectation- or E-step where the posterior over latent variables is obtained and a
maximization- or M-step where the expectation of the complete-data likelihood w.r.t. the
posterior distribution is maximized. It can be shown that the EM algorithm always
converges to a local maximum of p(X|θ). By introducing a latent variable ti for each
observation xi we can define the log marginal likelihood as

log p(X|θ) =
N∑

i=1
log p(xi|θ) =

N∑
i=1

log
C∑

c=1
p(xi, tic = 1|θ) (2.10)

Next we introduce a distribution q(ti) over latent variable ti.

log p(X|θ) =
N∑

i=1
log

C∑
c=1

q(tic = 1)p(xi, tic = 1|θ)
q(tic = 1) =

N∑
i=1

logEq(ti)
p(xi, ti|θ)

q(ti)
(2.11)

We now have a concave function log of an expectation which allows us to apply Jensen’s
inequality to define a lower bound L on log p(X|θ).

log p(X|θ) =
N∑

i=1
logEq(ti)

p(xi, ti|θ)
q(ti)

≥
N∑

i=1
Eq(ti) log p(xi, ti|θ)

q(ti)

= Eq(T ) log p(x, T |θ)
q(T )

= L(θ, q)
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This lower bound is a function of θ and q. When we subtract the lower bound from the
log marginal likelihood we should end up with something that is non-negative.

log p(X|θ)− L(θ, q) = log p(X|θ)− Eq(T ) log p(X, T |θ)
q(T )

= Eq(T ) log p(X|θ)q(T )
p(X, T |θ)

= Eq(T ) log q(T )
p(T |X, θ)

= KL(q(T ) || p(T |X, θ))

We end up with the Kullback-Leibler (KL) divergence between q(T ) and the true
posterior over latent variables. It can be shown that the KL divergence is always
non-negative. We finally can write the following expression for the lower bound.

L(θ, q) = log p(X|θ)−KL(q(T ) || p(T |X, θ)) (2.12)

In the E-step of the EM algorithm L(θ, q) is maximized w.r.t. q and θ is held fixed.

qnew = argmax
q
L(θold, q) = argmin

q
KL(q(T ) || p(T |X, θold)) (2.13)

L(θ, q) is maximized when KL(q(T ) || p(T |X, θ)) is minimized as log p(X|θ) doesn’t
depend on q. If we can obtain the true posterior, like in the GMM case, we can set q(T )
to p(T |X, θ) and the KL divergence becomes 0. In the M-step L(θ, q) is maximized w.r.t.
θ and q is held fixed. Using Eq. (2.12) we get

θnew = argmax
θ
L(θ, qnew)

= argmax
θ

Eqnew(T ) log p(X, T |θ)
qnew(T )

= argmax
θ

Eqnew(T ) log p((X, T |θ)− Eqnew(T ) log qnew(T )

= argmax
θ

Eqnew(T ) log p(X, T |θ) + const.

If the true posterior is known Eq. (15) becomes Eq. (7) except for the constant term
which can be ignored during optimization. Again, we let θold ← θnew and repeat these
steps until convergence.

2.3.3 Variational Autoencoder
The goal of the variational autoencoder (VAE) is to learn a probability distribution
Pr(x) over a multi-dimensional variable x. There are two main reasons for modelling
distributions. First, we might want to draw samples (generate) from the distribution to
create new plausible values of x. Second, we might want to measure the likelihood that a
new vector was created by this probability distribution. It is common to talk about the
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variational autoencoder as if it is the model of Pr(x). However, this is misleading; the
variational autoencoder is a neural architecture that is designed to help learn the model
for Pr(x). The final model contains neither the ‘variational’ nor the ‘autoencoder’ parts
and is better described as a non-linear latent variable model. Maximum likelihood
learning of this model is not straightforward, but we can define a lower bound on the
likelihood. To maximize the bound, derviatives need to be computed, but unfortunately,
it’s not possible to compute the derivative of the sampling component. To side-step this
problem there is a trick called reparameterization trick.
The likelihood Pr(x|h, ϕ) allows to compute the distribution over the observed data
given hidden variable h. Moving in the other direction mean given an observed data
example x which are the possible values of the hidden variable h were responsible for it.
This information is encompassed in the posterior distribution, using Bayes’s rule:

Pr(h|x) = Pr(x|h)Pr(h)
Pr(x) (2.14)

In practice, there is no closed form expression for the left hand side of this equation. The
denominator Pr(x) can not be evaluated and so the numerical value of the posterior for a
given pair h and x.
In order to solve the closed form expression, the posterior is approximated using a
variational distribution. The ojective becomes approximate at best the posterior using a
variational distribution q(h).

log[Pr(x|ϕ)] = log
[∫

Pr(x, h|ϕ)dh
]

(2.15)

= log
[∫

q(h)Pr(x, h|ϕ)
q(h) dh

]
, (2.16)

Given the Jensen’s inequality for the logarithm:

log

[∫
q(h)Pr(x, h|ϕ)

q(h) dh
]
≥

∫
q(h) log

[
Pr(x, h|ϕ)

q(h)

]
dh, (2.17)

where the term on the right hand side is known as the evidence lower bound or ELBO. In
practice, the distribution q(h) will have some parameters θ as well and so the ELBO can
be written as:

ELBO[θ, ϕ] =
∫

q(h|θ) log
[

Pr(x, h|ϕ)
q(h|θ)

]
dh. (2.18)

To learn the non-linear latent variable model, this quantity is maximized as a function of
both θ and ϕ. The neural architecture that computes this quantity is the variational
autoencoder.
The ELBO is described as being tight when for a fixed value of ϕ some parameters θ are
chosen so that the ELBO and the likelihood function coincide. This happens when the
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distribution q(θ) is equal to the posterior distribution Pr(h|x) over the hidden variables.

ELBO[θ, ϕ] =
∫

q(h|θ) log
[

Pr(x, h|ϕ)
q(h|θ)

]
dh

=
∫

q(h|θ) log
[

Pr(h|x, ϕ)Pr(x|ϕ)
q(h|θ)

]
dh

=
∫

q(h|θ) log [Pr(x|ϕ)] dh +
∫

q(h|θ) log
[

Pr(h|x, ϕ)
q(h|θ)

]
dh

= log[Pr(x|ϕ)] +
∫

q(h|θ) log
[

Pr(h|x, ϕ)
q(h|θ)

]
dh

= log[Pr(x|ϕ)]−DKL [q(h|θ)||Pr(h|x, ϕ)] . (2.19)

This equation shows that the ELBO is the original log likelihood minus the
Kullback-Leibler divergence DKL [q(h|θ)||Pr(h|x, ϕ)] which will be zero when these
distributions are the same. Hence the bound is tight when q(h|θ) = Pr(h|x, ϕ). Since the
KL divergence can only take non-negative values it is easy to see that the ELBO is a
lower bound on log[Pr(x|ϕ)] from this formulation.
Given the fact that the posterior distribution Pr(h|x) over the hidden variables can not
be expressed for non-linear latent model. The solution to the problem is to make a
variational approximation: given a simple parametric form for q(h|θ) and use this as an
approximation to the true posterior. In this case a normal distribution with parameters µ
and Σ is chosen. This distribution is not always going to be a great match to the
posterior, but will be better for some values of µ and Σ than others. The model is
optimized when is found the normal distribution that is “closest” to the true posterior
Pr(h|x). This corresponds to minimizing the KL divergence.
Since the optimal choice for q(h|θ) was the posterior Pr(h|x) and this depended on the
data example x, it makes sense that variational approximation should do the same and so:

q(h|θ, x) = Normh[gµ[x|θ], gσ[x|θ]] (2.20)

where g[x, θ] is a neural network with parameters θ that predicts the mean and variance
of the normal variational approximation.

Figure 2.5: Variational autoencoder
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However, there’s a problem. The network involves a sampling step and there is no way to
differentiate through this. Consequently, it’s impossible to make updates to the
parameters θ that occur earlier in the network than this. Fortunately, there is a simple
solution; moving the stochastic part into a branch of the network which draws a sample
from Normϵ[0, I] and then use the relation

h∗ = µ + Σ1/2ϵ (2.21)

to draw from the intended Gaussian. Now it is possible compute the derivatives as usual
because there is no need for the backpropagation algorithm to pass down the stochastic
branch. This is known as the reparameterization trick and is illustrated in figure.

Figure 2.6: Reparameterization trick

2.4 Time series analysis
This section gives techniques for time series analysis. It focuses on the problem of
processing and analysing data to gain useful information. The methods presented are
trend estimation and extraction of features.
Time series analysis is a specific way of analyzing a sequence of data points collected over
an interval of time. In time series analysis, analysts record data points at consistent
intervals over a set period of time rather than just recording the data points
intermittently or randomly. However, this type of analysis is not merely the act of
collecting data over time.
What sets time series data apart from other data is that the analysis can show how
variables change over time. In other words, time is a crucial variable because it shows
how the data adjusts over the course of the data points as well as the final results. It
provides an additional source of information and a set order of dependencies between the
data. Additionally, time series data can be used for forecasting—predicting future data
based on historical data.
Time series analysis helps organizations understand the underlying causes of trends or
systemic patterns over time. When organizations analyze data over consistent intervals,
they can also use time series forecasting to predict the likelihood of future events. Time
series forecasting is part of predictive analytics. It can show likely changes in the data,
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like seasonality or cyclic behavior, which provides a better understanding of data
variables and helps forecast better.
For example, Axyon AI srl Axyon AI is one of the leading players in deep learning
solutions for time series forecasting in both traditional and decentralized finance.

2.4.1 Trend estimation
To analyse long term changes in a time series it can be useful to calculate the trend of
the time series. The computed trend is itself a time series that explains underlying
tendencies and can be viewed as a smoothed version of the original time series. There are
multiple ways of computing the trend, this section presents the methods moving average,
moving median and exponentially weighted moving average.

• Moving Average One of the most intuitive ways of computing the trend is to use
moving average. Utilising this method the trend component, ỹ(t), at each point in
time is the average of the n previous points. Formally, let y be a time series of
process values and n be the number of previous points to use. The trend component
or moving average at time t is given by

ỹ = MA(t) = yt + yt−1 + ... + yt−n

n
= 1

n

t−n∑
i=t

yy (2.22)

• Moving Median An other intuitive way to calculate the trend is to use moving
median. This is analogous to the moving average method, but the average is
exchanged for the median. Formally, let y be a time series of process values and n
be a fixed time frame. Then the trend component or moving median at time t is
given by the median of the t previous points,

ỹ = MM(t) = median(yt + yt−1 + ... + yt−n). (2.23)

• Exponentially weighted moving averageAnother way of calculating a trend is
to use an exponentially weighted moving average. This method is related to the
moving average, but uses a smoothing coefficient θ instead of a number of previous
points n. The exponentially moving average is the average of all historical points
but the influence of the historical points decay exponentially with time. Let yt be
the value of the time series at time t and θ ∈ [0,1] be the smoothing constant. The
exponentially weighted average is given by

ỹ = EWMA(t) = (1− θ)(yt + θyt−1 + θ2yt−n + ...). (2.24)

2.4.2 Extraction of features
A time series consists, in its raw state, of a collection of time stamps and values
associated with these. To detect changes in amplitude or shape of the time series it is
necessary to extract information about the patterns of the time series. This section
defines the important task of features engineering in time series and introduce FRESH
(FeatuRe Extraction and Scalable Hypothesis testing) algorithm. Feature engineering
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plays a crucial role in many of the data modelling tasks. This is simply a process that
defines important features of the data using which a model can enhance its performance.
In time series modelling, feature engineering works in a different way because it is
sequential data and it gets formed using the changes in any values according to the time.
In a popular study Maximilian Christ et al. (2016) proposed an algorithm that combines
stablished feature extraction methods with a feature importance filter. FRESH is an
efficient, scalable feature extraction algorithm, which filters the available features in an
early stage of the machine learning pipeline with respect to their significance for the
classification or regression task, while controlling the expected percentage of selected but
irrelevant features. The algorithm characterizes time series with comprehensive and
well-established feature mappings and considers additional features describing
meta-information. In a second step, each feature vector is individually and independently
evaluated with respect to its significance for predicting the target under investigation.
The result of these tests is a vector of p-values, quantifying the significance of each feature
for predicting the label/target. In order to characterize a time series with respect to its
dynamics and reduce the data volume, a mapping θk : Rnt → R is introduced, which
captures a specific aspect k of the time series. One example for such mapping might be
the maximum operator θmax(si,j) = max(si,j,1, si,j,2, ..., si,j,υ, ..., si,j,nt) which quantifies
the maximal value ever recorded for time series si,j . This kind of lower dimensional
representation is called a feature, which is a measurable characteristics of the considered
time series. Other examples for feature mappings θk of time series might be their mean,
the number of peaks with a certain steepness, their periodicity, a global trend, etc.

Figure 2.7: FRESH Algorithm
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Feature filtering

Typically, time series are noisy and contain redundancies. Therefore, one should keep the
balance between extracting meaningful but probably fragile features and robust but
probably non-significant features. Some features such as the median will not be heavily
influenced by outliers, others such as max will be intrinsically fragile. The choice of the
right time series feature mappings is crucial to capture the right characteristics for the
task at hand. A meaningless feature describes a characteristic of the time series that is
not useful for the classification or regression task at hand. Given a binary target Y ,
stating that the relevance of feature X is measured as the difference between the class
conditional distributions fx|y=0 and fx|y=1. In general, a feature X is relevant for
predicting target Y if and only if (Radivojac et al. [2004])

∃y1, y2withfY (y1) > 0, fY (y2) > 0 : fx|y=y1 /= fx|y=y2 (2.25)

2.5 Confidence calibration
Confidence calibration is defined as the ability of some model to provide an accurate
probability of correctness for any of its predictions. Such calibrated confidence scores are
important in various “high-stakes” applications where incorrect predictions are extremely
problematic (e.g., self-driving cars, medical diagnosis, etc.), as calibrated probability
scores associated with each prediction allow low-quality predictions to be identified and
discarded. Thus, even if neural network output cannot yet be fully explained, confidence
calibration provides a practical avenue for avoiding major mistakes in practice by
associating each prediction with an accurate uncertainty/confidence score.
The types of applications that depend most on properly-calibrated uncertainty.

• Filtering poor predictions iven a properly-calibrated model, predictions with
high uncertainty (or low confidence) can be discarded to avoid unnecessary model
errors. Such an ability to discard incorrect predictions based upon a confidence score
associated with each prediction is especially impactful in the high-risk applications
mentioned above. Although truly explaining or understanding neural network
output may remain difficult in the near term, properly calibrated uncertainty scores
provide a practical avenue for detecting and avoiding a neural network’s mistakes.

• Model-aware active learning Proper uncertainty estimates enable data that is
poorly-understood by the model to be easily identified. As a result, data associated
with low-confidence predictions can be set aside and passed to a human annotator
to be labeled and included in the model’s training set. In this way, model
uncertainty can be used to iteratively identify data that the model doesn’t
understand, enabling a form of model-aware active learning.

• Detecting OOD data Models with good calibration properties can often be
applied to detecting out-of-distribution (OOD) data, or data that is significantly
different from the model’s training set. Although calibration and OOD detection are
orthogonal problems — e.g., softmax scores can be used directly to detect OOD
data despite being poorly calibrated — they are often studied in tandem, where the

14



2 – Literature Review

best calibration methodologies are evaluated with respect to both calibration and
the ability to detect OOD data (i.e., by assigning high uncertainty/low confidence
to such examples)

As far as this project is concerned, it is sufficient to know the concept and the idea
behind a calibrated prediction, which is why I have not dwelled on the theory of
confidence calibration. In the following chapter, I will discuss the methodology used in
this project and the steps that led to several experimental results.
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Chapter 3

Method

3.1 Dataset
The dataset used in this work is PhysioNet MIT-BIH Arrhythmia made of labeled ECG
records. (aggiungi reference da https://arxiv.org/pdf/1805.00794.pdf) The time series
that compose this dataset are multivariate, but in the experiments it has been used ECG
lead II re-sampled to sampling frequency of 125Hz as the input, the final data are
univariate time series. The MIT-BIH dataset consists of ECG recordings from 47 different
subjects recorded at the sampling rate of 360Hz. Each beat is annotated by at least two
cardiologists. In accordance with Association for the Advancement of Medical
Instrumentation (AAMI) EC57 standard five different beat categories have been found.
The dataset consisting of five different categories of beats is strongly unbalanced, for
simplicity and to avoid this problem it goes from five categories to a binary
discrimination between "normal" and "abnormal" beats. All the samples are cropped,
downsampled and padded with zeros to the fixed dimension of 188. This dataset consists
of a series of CSV files. Each of these CSV files contain a matrix, with each row
representing an example in that portion of the dataset. The final element of each row
denotes the class to which that example belongs.

3.2 Workflow
The goal of this work is to find a correlation between an output score from an anomaly
detector and the output score from a time series classifier. If this correlation exists and
follows a pattern that reflects expectations, then it was thought to be able to use a
class-conditioned likelihood that takes into account the anomaly score to calibrate the
classifier Therefore, finally, obtain a prediction with a good degree of confidence.
The main steps that have been defined to accomplish the goal are:

1. Artificially inject noise with varying levels of noise in a well-known time series
dataset;

2. Features extraction on time series using FRESH algorithm;
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Figure 3.1: Univariate time series from MIT-BIH Arrythmia dataset

3. Train a classifier on the dataset made in different percentage of noisy and clean data;

4. Use a class-agnostic unsupervised method as anomaly detector, to be more specific
use this method as density estimator p(x);

5. Question: is there a relationship between the punctual loss of the classifier trained in
step (3) and the learned in step (4)?;

6. If the relationship exists, model and train a new classifier which take in account the
p(x|y) computed using the Bayes" rule and the density estimated at step (4).

3.2.1 Synthetic noise injection
First thing, I injected artificial noise in the clean data, in detail Gaussian noise. Given n
time series in the original dataset, I sample n random uniform positive numbers. For each
series I apply Gaussian noise with variance equal to the number I extracted previously, in
this way, some series will be very noisy (e.g. variance equal to 0.9) and others practically
clean (e.g. variance equal to 0.1). The outputs of this step are two time series datasets
with same dimension, one is clean and the other one is contaminated.

3.2.2 Feature extraction
This phase takes as inputs the outputs of the previous stage. On both of the datasets is
applied a feature extraction algorithm, called FRESH, explained in detail in Chapter 2.
The Python package tsfresh supports this process by providing automated time series
feature extraction and selection on basis of the FRESH algorithm. Library tsfresh
implements the application programming interfaces of the most popular Python machine
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learning and data analysis frameworks such as scikit-learn, numpy, pandas, scipy, keras or
tensorflow. This enables users to seamlessly integrate tsfresh into complex machine
learning systems that rely on state-of-the-art Python data analysis packages. The
feature extraction submodule contains both the collection of feature calculators and
the logic to apply them efficiently to the time series data. The main public function of
this submodule is extract features. The number and parameters of all extracted
features are controlled by a settings dictionary. The feature selection submodule
provides the function select features, which implements the highly parallel feature
selection algorithm. The initial number of features extracted was 217 then through a
filtering phase, the final number was 202, still to many. For sake of simplicity, I decided
to manually choose 35 final features which were used in the most important phases of
research. Those features describe basic characteristics of the time series such as the
number of peaks, the average or maximal value or more complex features such as the
time reversal symmetry statistic. These are the features extracted:

Figure 3.2: Features extraction on time series

• sum values

• median

• length

• standard deviation

• variance

• root mean square

• maximum
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• absolute maximum

• minimum

• abs energy

• benford correlation

• count above mean

• first location of maximum

• first location of minimum

• longest strike above mean

• variation coefficient

• sample entropy

• binner entropy max bins 10

• fourier entropy bins 2

• fourier entropy bins 3

• fourier entropy bins 5

• fourier entropy bins 10

• fourier entropy bins 100

• number cwt peaks n 1

• number cwt peaks n 5

• number peaks n 1

• number peaks n 3

• number peaks n 5

• number peaks n 10

• number peaks n 50

• percentage of reoccurring values to all values

• skewness
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3.2.3 Classifier training

The classifier goal is a binary task that aim to distinguish between normal and abnormal
time series, but instead of taking the time series raw data as input, it gets the features
extracted from the original time series. The MLP used in this experiments is pretty
simple and a graphical representation is shown in the figure below.

Figure 3.3: MLP Architecture

It is made of one hidden layer, with the same number of neurons of the input layers. In
all experiments, TensorFlow computational library is used for model training and
evaluation. Cross entropy loss on the softmax outputs is used as the loss function. For
training the networks, it is used Adam optimization method and early stopping.
The classifier is trained and tested on mixed data, that is, data in different percentages
contaminated and clean. In order to do a meaningful trend analysis, I tried different
percentages as seen in the table below.

Clean % - Contaminated % Accuracy AUC Score
(90 - 10) 0.9213 0.9640
(80 - 20) 0.9134 0.9615
(70 - 30) 0.9070 0.9551
(60 - 40) 0.8891 0.9514

Table 3.1: Classifier results when trained and tested on mixed data

In order to observe thoroughly the classifier trend. I tested the classifier on all
contaminated test set, results in the table below.

Clean % - Contaminated % Accuracy test set all contaminted
(80 - 20) 0.7220
(70 - 30) 0.6524
(60 - 40) 0.6416

Table 3.2: Classifier results when trained on mixed data and test on all contaminated data
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3.2.4 Anomaly detection
This is a delicate phase of the project. This phase can be logically divided into two
sub-phase. The first one regards anomaly detection using unsupervised methods, as
already mentioned in this project were developed two different architecture to detect
anomalies, Gaussian Mixture Model and Variational Autoencoder. The second one aim to
find a correlation between the score of the classifier trained in the previous stage and the
one coming as output from the detection method. The correlation/relationship between
these two elements makes it possible to compute the likelihood on the whole dataset and
to use the likelihood in the training phase of the classifier to obtain a better calibrated
prediction.

Anomaly detection with Gaussian Mixture Model

Gaussian mixture model is a probabilistic model that assumes all the data points are
generated from a mixture of a finite number of Gaussian distributions with unknown
parameters. A Gaussian Mixture is a function that is comprised of several Gaussians,
each identified by k ∈ 1, . . . , K, where K is the number of clusters in the dataset.
Before even implementing the model I decided to determine the best number k of cluster
in the dataset using two popular methods: Elbow method and Silhouette method. The
elbow method plots the value of the cost function produced by different values of k. If k
increases, average distortion will decrease, each cluster will have fewer constituent
instances, and the instances will be closer to their respective centroids. However, the
improvements in average distortion will decline as k increases. The value of k at which
improvement in distortion declines the most is called the elbow, at which we should stop
dividing the data into further clusters.
The silhouette value is a measure of how similar an object is to its own cluster (cohesion)
compared to other clusters (separation). The silhouette ranges from −1 to +1, where a
high value indicates that the object is well matched to its own cluster and poorly
matched to neighbouring clusters. If most objects have a high value, then the clustering
configuration is appropriate. If many points have a low or negative value, then the
clustering configuration may have too many or too few clusters.
From both elbow and silhouette method it turned out to be k = 3 the best number of
cluster given the dataset.
Once known the k, Gaussian mixture model is implemented using scikit-learn. Also in
this case, the model is trained and tested first with mixed data, later trained with mixed
data and tested with only contaminated data. The results from GMM comes from the
method score_samples(X) where X is the test set for which I want to compute the
score. This method compute the log-likelihood of each sample. What is expected, then, is
that poorly dirty and clean data will have close log-likelihood values, while very dirty
data will have significantly lower log-likelihood values.
Once the score from the GMM are obtained and once the classifier is trained on the same
data the GMM is trained. I compute the Punctual Loss from the classifier, to be more
specific, for each test sample I compute the loss coming from the classifier. As a final
step, for each contaminated data, I divide the data into bins with contamination ranging
from 0 to 0.1, then from 0.1 to 0.2, and so on up to 0.9. For each of these bins, I calculate
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the average of the score coming out of the GMM and the punctual loss coming out of the
classifier and evaluate the correlation. The results will be shown in the next chapter.

Anomaly detection with Variational Autoencoder

An autoencoder is a deep learning model that is usually based on two main components:
an encoder that learns a lower-dimensional representation of input data, and a decoder
that tries to reproduce the input data in its original dimension using the
lower-dimensional representation generated by the encoder. An autoencoder learns to
encode the input data by trying to minimize the reproduction error or the difference
between the original input vector and the output vector that was reproduced by the
decoder from encoded data. If the autoencoder is sufficiently trained to produce a good
reproduction of the input data it was trained on, and assuming that it was trained on
enough data, then it supposes to produce a more or less stable and minimal reproduction
error when it is fed with data that is “similar” to the data that it was trained on.
However, it also means that an unusual or extreme reproduction error probably means
that the AE has encountered an input vector that is very different than the input it was
trained on and therefore it failed to properly reproduce it. If the data shown to our AE is
supposed to be similar to the data it was trained on then an input that generates an
extreme reproduction error is likely to be an anomaly.
In a Variational Autoencoder (VAE), the encoder similarly learns a function that takes as
its input a vector of size n. However, a VAE learns to generate two vectors (of size m)
that represent the parameters (mean and variance) of a distribution from which the
latent vector is sampled, and which the decoder function can transform back to the
original input vector. Simply put, the VAE’s learning task is to learn a function that will
generate parameters of distributions from which a latent vector that a decoder can easily
reproduce can be sampled.
The purpose of this part is to quickly delve into the implementation code of a VAE that
can detect anomalies. I followed the Keras Variational Autoencoder documentation.

1. Encoder: takes as an input a vector of size n and generates the latent vector (z).
The encoder first learns the mean and (log) variance of the distribution of z (i.e.,
z_mean and z_log_var respectively). Then it samples z from this distribution
using a lambda layer calling the function sample(z_mean, z_log_var). The
purpose of the sample function is to sample the normally distributed z by returning
its mean + σ ∗ ϵ. The role of ϵ is to ensure te continuity of the latent space.

2. Decoder: it takes the sampled latent vector z as its input and tries to reproduce it
(generative component).

Reconstruction approaches to anomaly detection identify anomalies by their relatively
high reconstruction error. Therefore, these methods work best when the model can be
first trained on normal, or mostly normal, data. In this way, it can be increased the
confidence that a relatively high reconstruction error was caused by a genuine anomaly.

In the next chapter, I will comment on the results of this phase. The emerging
observations are the central part of my project.
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Figure 3.4: Variational Autoencoder architecture

3.2.5 Class-conditioned likelihood estimation
For this step to apply, there must be a significant correlation in the previous step. Once
the correlation found at the previous step is defined as meaningful, from the implemented
anomaly detection models, the p(x) of the data is extracted. In other words, both the
GMM and VAE are used as density estimator. Given the p(x) and the p(y|x) (this pdf is
the output of the classifier). From the Bayes’ rule p(x|y) = p(x,y)

p(y) = p(y|x)
p(y) , where p(y) is
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given by dividing the number of samples in the classes by its cardinality. This quantity
should tell us how “representative” of class y the point x is.

3.2.6 Classifier re-training
This last step takes into account the p(x|y) computed in the previous step. The main idea
is to model and train a new classifier which include p(x|y), two are the paths to take.

1. Overweight points with low p(x|y), these points catch edge cases in the classification
problem.

2. Discard points with low p(x|y) to denoise the classifier.
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Chapter 4

Results

4.1 First Attempt: Gaussian Mixture Model on fea-
tures extracted from time series

In this section, I present the first round of experiments and the following results. The
datasets used in this section are the two features extracted dataset.

• time series raw data → feature extraction → dataset clean

• time series raw data→ noise injection→ feature extraction→ dataset contaminated

The anomaly detector implemented is a Gaussian Mixture Model. Each section refers to
different percentages of data splitting, to be more clear the first percentage value always
refers to the percentage of clean data in the dataset while the second percentage value
refers to the percentage of contaminated data in the dataset. For example, 90% of the
data comes from the clean dataset and 10% of the data comes from the contaminated
dataset.

4.1.1 Mix 90-10
Classifier results

The classifier architecture is explained and presented in Chapter 3. The main information
and results are:

• Loss: Binary Cross Entropy

• Optimizer: Adam

• Early Stopping on validation loss, min_delta = 0.1 and patience = 10

• Number of epochs per training: 33

• Accuracy on test set: 0.9213

• AUC Score: 0.9640
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Figure 4.1: Model 90-10 results

Correlation results

In this section, I consider the contaminated data and their noise parameters. I divide the
data into bins with contamination ranging from 0 to 0.1, then from 0.1 to 0.2, and so on
up to 0.9. For each of these bins, I compute the mean of the score coming out of the
GMM and the punctual loss coming out of the classifier and evaluate the correlation.
Then, I compute standard deviation. For both mean and standard deviation I also
computed a confidence interval with bootstrap.

Noise Param Mean Log Density Mean Punctual Loss Total
(0.0, 0.1] -15.627780 0.339448 447
(0.1, 0.2] -11.562050 0.458804 411
(0.2, 0.3] -8.907404 0.423618 430
(0.3, 0.4] -8.281731 0.519411 406
(0.4, 0.5] -12.251381 0.538863 486
(0.5, 0.6] -12.474466 0.481026 444
(0.6, 0.7] -16.508182 0.516615 448
(0.7, 0.8] -21.235824 0.569505 403
(0.8, 0.9] -21.235824 0.569505 403

Table 4.1: Mean correlation table 90-10
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4.1.2 Mix 80-20

The experiments done in this mix are different from the previous one, in this case I
decided to test the classifier and the GMM on all contaminated test set.

Classifier results

The main information and results are:

• Loss: Binary Cross Entropy

• Optimizer: Adam

• Early Stopping on validation loss, min_delta = 0.1 and patience = 10

• Number of epochs per training: 28

• Accuracy on test set: 0.7220

• AUC Score: 0.9615

Figure 4.2: Model 80-20 results

Correlation results
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Noise
Param Mean Log Density Mean Punctual Loss Total

(0.0, 0.1] -18.948928 0.539944 4469
(0.1, 0.2] -14.536341 0.674554 4428
(0.2, 0.3] -12.969266 0.643553 4315
(0.3, 0.4] -12.976513 0.632151 4271
(0.4, 0.5] -14.246201 0.653782 4390
(0.5, 0.6] -15.283476 0.678828 4391
(0.6, 0.7] -16.757100 0.728251 4447
(0.7, 0.8] -18.490283 0.767304 4329
(0.8, 0.9] -22.255502 0.799899 4379

Table 4.2: Mean correlation table on 80-20 test set all contaminated

4.1.3 Mix 70-30

Classifier results

The classifier architecture is explained and presented in Chapter 3. The main information
and results are:

• Loss: Binary Cross Entropy

• Optimizer: Adam

• Early Stopping on validation loss, min_delta = 0.1 and patience = 10

• Number of epochs per training: 19

• Accuracy on test set: 0.9070

• AUC Score: 0.9551
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Figure 4.3: Model 70-30 results

Correlation results

Noise
Param Mean Log Density Mean Punctual Loss Total

(0.0, 0.1] -2.393209 0.301150 1323
(0.1, 0.2] -1.722611 0.315670 1316
(0.2, 0.3] 0.552621 0.258184 1291
(0.3, 0.4] 0.364981 0.311405 1289
(0.4, 0.5] -0.093850 0.349352 1325
(0.5, 0.6] -0.560022 0.341285 1307
(0.6, 0.7] -1.758111 0.412344 1345
(0.7, 0.8] -3.617692 0.462201 1274
(0.8, 0.9] -9.459266 0.445434 1280

Table 4.3: Correlation 70-30
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Figure 4.4: Plot of correlation 70-30

Classifier results with test set all contaminated

The main information and results are:

• Loss: Binary Cross Entropy

• Optimizer: Adam

• Early Stopping on validation loss, min_delta = 0.1 and patience = 10

• Number of epochs per training: 22

• Accuracy on test set: 0.6524
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Figure 4.5: Model 70-30 results

Correlation results with test set all contaminated

Noise
Param Mean Log Density Mean Punctual Loss Total

(0.0, 0.1] -2.841234 1.121904 4472
(0.1, 0.2] -2.638512 1.078769 4327
(0.2, 0.3] -2.355713 1.116544 4426
(0.3, 0.4] -2.400468 1.095751 4336
(0.4, 0.5] -2.643988 1.053106 4402
(0.5, 0.6] -2.751298 1.102526 4341
(0.6, 0.7] -3.395038 1.082285 4319
(0.7, 0.8] -2.747146 1.123283 4337
(0.8, 0.9] -2.399955 1.127237 4398

Table 4.4: Correlation test set all contaminated
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Figure 4.6: Plot of correlation 70-30 test set all contaminated

4.1.4 Mix 60-40

Classifier results

The main information and results are:

• Loss: Binary Cross Entropy

• Optimizer: Adam

• Early Stopping on validation loss, min_delta = 0.1 and patience = 10

• Number of epochs per training: 27

• Accuracy on test set: 0.8891

• AUC Score: 0.9514
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Figure 4.7: Model 60-40 results

Correlation results

Noise
Param Mean Log Density Mean Punctual Loss Total

(0.0, 0.1] -0.853594 0.245896 1836
(0.1, 0.2] 0.496548 0.234424 1812
(0.2, 0.3] 1.757241 0.234539 1746
(0.3, 0.4] 2.450092 0.244296 1713
(0.4, 0.5] 1.853068 0.301424 1769
(0.5, 0.6] 1.857895 0.295378 1717
(0.6, 0.7] 0.230649 0.328197 1711
(0.7, 0.8] -1.108893 0.362332 1684
(0.8, 0.9] -3.857562 0.353005 1714

Table 4.5: Correlation 60-40
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Figure 4.8: Plot of correlation 60-40

Classifier results with test set all contaminated

The main information and results are:

• Loss: Binary Cross Entropy

• Optimizer: Adam

• Early Stopping on validation loss, min_delta = 0.1 and patience = 10

• Number of epochs per training: 22

• Accuracy on test set: 0.6416
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Figure 4.9: Model 60-40 results test set all contaminated

Correlation results with test set all contaminated

Noise
Param Mean Log Density Mean Punctual Loss Total

(0.0, 0.1] -0.447251 1.156162 4472
(0.1, 0.2] -0.214423 1.105412 4327
(0.2, 0.3] -0.004207 1.121949 4426
(0.3, 0.4] -0.014667 1.124722 4336
(0.4, 0.5] -0.330368 1.087210 4402
(0.5, 0.6] -0.335292 1.127865 4341
(0.6, 0.7] -1.148233 1.126519 4319
(0.7, 0.8] -0.390617 1.163275 4337
(0.8, 0.9] -0.013459 1.147852 4398

Table 4.6: Correlation 60-40 test set all contaminated
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Figure 4.10: Plot of correlation 60-40 test set all contaminated

4.1.5 Observations on first attempt

In this section, I will assess the outcomes of the initial experiments conducted on
observations. Specifically, I will examine the trend that emerges when the attempts are
evaluated on both fully contaminated and mixed data.

The first point I want to mention concerns the loss values at specific points. The loss
shows a predictable pattern where, as the model is tested with both clean and dirty data,
the loss values remain around zero and tend to increase with higher levels of noise in the
data. In the case of a test set that is entirely contaminated, the loss values are around
one and tend to increase with higher levels of noise in the data.

However, this is not the case with the log density at the GMM output. We expected the
log density values to decrease as the noise level increased. Instead, the log density tends
to decrease in cases of intermediate noise, but it remains the same for low or high levels
of noise. The last point I would like to make, concerns a comparison of the log density
trend, with respect to an all contaminated test and a mixed test set. In the case of the
mixed set, the results on very high noise have a clear downward trend. In the case of all
contaminated, there is still a U-shaped trend, but it is not as marked as in the previous
case and the downward trend is not present.
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4.2 Second Attempt: Noise injection on features ex-
tracted

In this section, I do a check given the observations referred to the results of the first
attempt. Instead of performing noise injection on the time series, I perform noise injection
directly on the features extracted from the time series. The datasets used are two.

• time series raw data → features extraction → dataset clean

• time series raw data → features extraction → noise injection → dataset anomalized

4.2.1 Mix 80-20

Classifier results

The main information and results are:

• Loss: Binary Cross Entropy

• Optimizer: Adam

• Early Stopping on validation loss, min_delta = 0.1 and patience = 10

• Number of epochs per training: 18

• Accuracy on test set: 0.9017

• AUC Score: 0.9618
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Figure 4.11: Model 80-20 results

Correlation results

Noise
Param Mean Log Density Mean Punctual Loss Total

(0.0, 0.1] -48.559932 0.230494 842
(0.1, 0.2] -47.379800 0.321635 886
(0.2, 0.3] -46.738275 0.306743 891
(0.3, 0.4] -45.327699 0.270249 875
(0.4, 0.5] -45.339208 0.342461 909
(0.5, 0.6] -47.012512 0.335860 837
(0.6, 0.7] -48.202892 0.306258 869
(0.7, 0.8] -46.629199 0.304216 861
(0.8, 0.9] -46.949256 0.293974 829

Table 4.7: Mean correlation table 80-20
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Figure 4.12: Plot correlation 80-20

4.2.2 Mix 70-30

Classifier results

The main information and results are:

• Loss: Binary Cross Entropy

• Optimizer: Adam

• Early Stopping on validation loss, min_delta = 0.1 and patience = 10

• Number of epochs per training: 17

• Accuracy on test set: 0.9075

• AUC Score: 0.9609
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Figure 4.13: Model 70-30 results

Correlation results

Noise
Param Mean Log Density Mean Punctual Loss Total

(0.0, 0.1] -28.739045 0.210720 1248
(0.1, 0.2] -26.591500 0.230031 1309
(0.2, 0.3] -27.972264 0.229284 1315
(0.3, 0.4] -31.059644 0.224958 1348
(0.4, 0.5] -34.771632 0.265872 1290
(0.5, 0.6] -40.254348 0.285218 1358
(0.6, 0.7] -46.459532 0.325868 1264
(0.7, 0.8] -53.264157 0.307126 1277
(0.8, 0.9] -62.775841 0.350487 1259

Table 4.8: Mean correlation table 70-30
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Figure 4.14: Plot correlation 70-30

4.2.3 Mix 60-40

Classifier results

The main information and results are:

• Loss: Binary Cross Entropy

• Optimizer: Adam

• Early Stopping on validation loss, min_delta = 0.1 and patience = 10

• Number of epochs per training: 17

• Accuracy on test set: 0.9075

• AUC Score: 0.9609
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Figure 4.15: Model 60-40 results

Correlation results

Noise
Param Mean Log Density Mean Punctual Loss Total

(0.0 0.1] -27.244678 0.215563 1742
(0.1, 0.2] -26.067839 0.232130 1744
(0.2, 0.3] -27.740601 0.236376 1725
(0.3, 0.4] -30.057670 0.234927 1681
(0.4, 0.5] -33.026746 0.260770 1770
(0.5, 0.6] -37.504192 0.274427 1788
(0.6, 0.7] -42.542819 0.333937 1802
(0.7, 0.8] -48.229647 0.359181 1748
(0.8, 0.9] -54.606974 0.377085 1750

Table 4.9: Mean correlation table 60-40
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Figure 4.16: Plot correlation 60-40

4.2.4 Observations on second attempt
The second experimental attempt produces results that are markedly different from the
first attempt. In these cases, particularly in the 70-30 and 60-40 mixtures, the log density
trend decreases as the noise parameter injected into the data increases. This phenomenon
occurs because the noise is introduced after the feature extraction phase, rather than
before it.
It is worth noting, though, that this trend is not as evident in the case of the 80-20
mixture as it is in the mixes mentioned earlier.
Before drawing any definitive conclusions from the previous observations, additional
experiments were conducted using a Variational Autoencoder as the detector, rather than
a GMM, and by performing an analysis of time series data without going through the
feature extraction phase.

4.3 Third Attempt: Analysis on time series
In this round of experiments, I decided to do time series analysis without going through
the feature extraction phase. A method based on deep convolutional networks for the
classification of heartbeats is proposed. The time series dataset as input to the
convolutional architecture is the same as that used in the previous experiments. Again,
two datasets were used, one clean and one to which variable Gaussian noise was injected.
This has been tested again for mixed datasets in different percentages of clean and dirty
data.

43



4 – Results

All convolution layers are applying 1-D convolution through time and each have 64
kernels of size 6. We also use max pooling of size 3. The predictor network consists of
three convolutional blocks followed by batch normalization. Two dense layers, all layers
have ReLu as activation function, with sigmoid in the last one. In all experiments,
TensorFlow computational library is used for model training and evaluation. Binary cross
entropy loss on the sigmoid output is used as the loss function. For training the networks,
I used Adam optimization method and early stopping.

4.3.1 Mix 90-10

Classifier results

• Loss: Binary Cross Entropy

• Optimizer: Adam

• Early Stopping on validation loss, min_delta = 0.1 and patience = 10

• Number of epochs per training: 5

• Accuracy on test set: 0.9799

Figure 4.17: Model 90-10 results

Correlation results

In this section, I consider the contaminated data and their noise parameters. I divide the
data into bins with contamination ranging from 0 to 0.1, then from 0.1 to 0.2, and so on
up to 0.9. For each of these bins, I compute the mean of the score coming out of the
GMM and the punctual loss coming out of the classifier and evaluate the correlation.
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Noise
Param

Mean Log
Density

Mean
Punctual Loss Total

(0.0, 0.1] 318.007730 0.050472 227
(0.1, 0.2] 298.450887 0.050467 217
(0.2, 0.3] 263.808622 0.024690 199
(0.3, 0.4] 203.074957 0.048809 210
(0.4, 0.5] 136.503013 0.095981 237
(0.5, 0.6] 39.523494 0.152298 226
(0.6, 0.7] -75.725387 0.152039 235
(0.7, 0.8] -192.623668 0.308071 202
(0.8, 0.9] -354.187163 0.111493 224

Table 4.10: Mean correlation table 90-10

Figure 4.18: Correlation results

4.3.2 Mix 80-20
Classifier results

• Loss: Binary Cross Entropy

• Optimizer: Adam

• Early Stopping on validation loss, min_delta = 0.1 and patience = 10

• Number of epochs per training: 5

• Accuracy on test set: 0.9772

Correlation results

In this section, I consider the contaminated data and their noise parameters. I divide the
data into bins with contamination ranging from 0 to 0.1, then from 0.1 to 0.2, and so on
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Figure 4.19: Model 80-20 results

up to 0.9. For each of these bins, I compute the mean of the score coming out of the
GMM and the punctual loss coming out of the classifier and evaluate the correlation.

Noise
Param

Mean Log
Density

Mean
Punctual Loss Total

(0.0, 0.1] 303.737194 0.048911 454
(0.1, 0.2] 292.845362 0.044226 451
(0.2, 0.3] 270.008340 0.069002 403
(0.3, 0.4] 230.766708 0.039692 436
(0.4, 0.5] 183.942303 0.084793 456
(0.5, 0.6] 119.899259 0.108734 459
(0.6, 0.7] 49.224328 0.089634 466
(0.7, 0.8] -35.868177 0.179822 439
(0.8, 0.9] -131.165743 0.104171 450

Table 4.11: Mean correlation table 80-20
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Figure 4.20: Correlation results

4.3.3 Mix 70-30
Classifier results

• Loss: Binary Cross Entropy

• Optimizer: Adam

• Early Stopping on validation loss, min_delta = 0.1 and patience = 10

• Number of epochs per training: 5

• Accuracy on test set: 0.9768

Figure 4.21: Model 70-30 results

Correlation results

In this section, I consider the contaminated data and their noise parameters. I divide the
data into bins with contamination ranging from 0 to 0.1, then from 0.1 to 0.2, and so on
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up to 0.9. For each of these bins, I compute the mean of the score coming out of the
GMM and the punctual loss coming out of the classifier and evaluate the correlation.

Noise
Param

Mean Log
Density

Mean
Punctual Loss Total

(0.0, 0.1] 294.440682 0.053380 689
(0.1, 0.2] 285.956653 0.047087 650
(0.2, 0.3] 265.918601 0.062139 618
(0.3, 0.4] 239.403489 0.049981 647
(0.4, 0.5] 203.697895 0.077318 700
(0.5, 0.6] 155.152608 0.109908 676
(0.6, 0.7] 102.548937 0.077213 669
(0.7, 0.8] 37.110784 0.129990 670
(0.8, 0.9] -34.538758 0.086861 673

Table 4.12: Mean correlation table 70-30

Figure 4.22: Correlation results

4.3.4 Mix 60-40
Classifier results

• Loss: Binary Cross Entropy

• Optimizer: Adam

• Early Stopping on validation loss, min_delta = 0.1 and patience = 10

• Number of epochs per training: 5

• Accuracy on test set: 0.9783
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Figure 4.23: Model 60-40 results

Correlation results

In this section, I consider the contaminated data and their noise parameters. I divide the
data into bins with contamination ranging from 0 to 0.1, then from 0.1 to 0.2, and so on
up to 0.9. For each of these bins, I compute the mean of the score coming out of the
GMM and the punctual loss coming out of the classifier and evaluate the correlation.

Noise
Param

Mean Log
Density

Mean
Punctual Loss Total

(0.0, 0.1] 283.965353 0.059269 897
(0.1, 0.2] 278.462605 0.046527 863
(0.2, 0.3] 260.897377 0.070631 837
(0.3, 0.4] 240.038722 0.048569 835
(0.4, 0.5] 211.710451 0.121541 882
(0.5, 0.6] 172.783213 0.116231 896
(0.6, 0.7] 131.302134 0.105600 905
(0.7, 0.8] 77.508168 0.091956 895
(0.8, 0.9] 19.099828 0.153255 889

Table 4.13: Mean correlation table 60-40
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Figure 4.24: Correlation results

4.3.5 Observations on third attempt

As seen from this latest round of experiments, when feature extraction is not performed,
the correlation trend is exactly as expected. The log density values from the GMM tend
to decrease as the noise in the data increases. When time series are analyzed using
convolutional neural networks, the results are good, and the accuracy values from the
classifier remain high in all cases that have been analyzed. Additionally, the loss from the
classifier also tends to increase as the noise increases. Therefore, the trend observed in
datasets composed of extracted features is not observed in this case where the feature
extraction phase is not performed, and direct work is done on the time series. Each of the
observations made in these results will be further discussed and analyzed in the last
chapter where conclusions will be drawn.

4.4 Fourth Attempt: Variational Autoencoder on fea-
tures extracted

The last popular approach implemented in this thesis to perform anomaly detection is
based on reconstruction methods. The underlying idea is based on the assumption that if
a model can learn a function that compresses and reconstructs normal data, then it will
fail to do so when encountered with anomalous data because its function was only trained
on normal data. The failure to reconstruct data or, more accurately, the range of the
reconstruction error that it entails, can therefore signal the presence of anomalous data.
Reconstruction approaches to anomaly detection have been implemented using deep
autoencoders with very good results, though an increasing body of literature suggests
improved results using the more sophisticated and probablistic variational autoencoders.
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4.4.1 Mix 85 - 15 with noise injection before features extraction
Model results

• Loss: Variational Autoencoder Loss (KL Loss and reconstruction loss)

• Optimizer: Adam

• Early Stopping on validation loss, min_delta = 0.01 and patience = 20

• Number of epochs per training: 776

• Loss on last epoch: 172.1885

• Loss validation set on last epoch: 170.0732
In the figure below it is possible to compare the two distributions of data, the first one of
the original data and the second one of the generated data.

Correlation results

As previously stated, generative methods can be used for detecting anomalies by
leveraging the core concept that the reconstruction error for anomalous data is typically
higher than that for non-anomalous data. To this end, the mean squared error between
the generated data and the original data is computed. In order to ensure consistency with
the results reported thus far, the mean reconstruction error was calculated for each noise
level of the corrupted data in the test set.

Noise
Param Mean Error

(0.0, 0.1] 0.065346
(0.1, 0.2] 0.060148
(0.2, 0.3] 0.057578
(0.3, 0.4] 0.054135
(0.4, 0.5] 0.059281
(0.5, 0.6] 0.059040
(0.6, 0.7] 0.061373
(0.7, 0.8] 0.060711
(0.8, 0.9] 0.067574

4.4.2 Mix 80 - 20 with noise injection after features extraction
For the sake of consistency during the final stage of experimentation, I opted to train and
test the identical Variational Autoencoder model using the data with injected noise after
the feature extraction phase, as opposed to the previous scenario where the noise was
introduced prior to this phase.
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Model results

• Loss: Variational Autoencoder Loss (KL Loss and reconstruction loss)

• Optimizer: Adam

• Early Stopping on validation loss, min_delta = 0.01 and patience = 20

• Number of epochs per training: 378

• Loss on last epoch: 73.7296

• Loss validation set on last epoch: 70.1093

Correlation results

Again, I have shown the correlation results, showing for each noise level applied to the
data the average value of the reconstruction error between the generated and original
data. These are the last correlation results I show before making the final observations
and conclusions.

Noise
Param Mean Error

(0.0, 0.1] 0.13759
(0.1, 0.2] 0.22086
(0.2, 0.3] 0.40064
(0.3, 0.4] 0.61684
(0.4, 0.5] 0.80142
(0.5, 0.6] 1.40573
(0.6, 0.7] 1.96923
(0.7, 0.8] 2.66509
(0.8, 0.9] 3.96225

4.4.3 Observations on fourth attempt
In this final attempt, I decided to test a generative model, given its wide usage in
literature. As can be seen from the correlation tables in the two different cases, in the first
case, the noise is barely detected, and the value remains constant for each interval present
in the tables, despite an expected increase in error with increasing noise. However, in the
second case, where the model is trained and tested on data that has been corrupted after
the feature extraction phase, the reconstruction error increases as the noise parameter
increases. This final experimental phase allowed me to close the circle of necessary
confirmations in order to draw conclusions from the results obtained. In the next section,
I will go into more detail about the conclusive observations, and then conclude with the
final section on future improvements related to the topic addressed in this thesis.
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Figure 4.25: Comparison of original data distributions with generated data distributions
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Chapter 5

Conclusions and future
improvements

5.1 Conclusions
Before starting a conclusive discussion that closes the circle on the results obtained in the
previous chapter, I prefer to take a step back and start from the initial idea behind this
project and how the results obtained in the experimental phases have directed the
subsequent steps presented. The initial goal was to obtain a calibrated classifier that
could report a degree of confidence in the prediction. Therefore, in cases where the
prediction was negatively influenced by the presence of anomalies, this could be seen from
the confidence score. In order to verify the possibility of achieving such a goal, the phases
defined at the beginning were:

• Apply variable noise to a time series dataset.

• Extract features from the time series and obtain two datasets, one of clean series
and one of noisy series.

• Perform data mixing at different percentages to obtain a final test dataset with both
clean and noisy data.

• Train a simple classifier on these datasets.

• Develop anomaly detection models (GMM, VAE).

• Determine a correlation between the output score of the anomaly detector and the
classifier score.

• Once a correlation has been observed, use Bayes’ rule that takes as input the
prediction made by the classifier, i.e., p(y|x), the probability density estimated by
the detector p(x), and the known prior p(y), to obtain p(x|y). This statistical data
can then be used to retrain the classifier by giving less weight to the data with low
p(x|y) or even removing those data that could degrade the performance of the
classifier.

54



5 – Conclusions and future improvements

Determining the correlation between the output scores of the detector and classifier
became a central part of the project, as the results obtained were not in line with
expectations. The output score of the detector follows a particular trend or even becomes
flat in some cases as the noise increases. This type of trend does not occur when the noise
is applied directly to the extracted features instead of the time series.
The feature extraction part was performed using a pre-trained extractor provided by the
tsfresh library, and the first conclusion was that the extracted features are robust to
noise. This conclusion reinforces the Axyon team’s assumption that engineered features
are more robust to noise than time series, reason why financial time series in Axyon are
subject to extracion. The results of the subsequent experimentation phases also support
this assumption, where the analysis of time series was performed using convolutional
neural networks.
Finally, I decided to test another popular anomaly detector in literature, namely the
Variational Autoencoder, and the same phenomenon as in the previous phases occurs. In
other words, if the noise is injected before the feature extraction phase, the detector is
not able to detect the noisy data, if the noise is injected after the feature extraction
phase, the detector is able to detect the noisy data.
In conclusion, I would like to make the following observation: if the initial goal was to
obtain a calibrated classifier using an anomaly score, the methods I experimented with do
not allow it in the case of searching for anomalies in time series subject to feature
extraction.

5.2 Future improvements
The first improvement I would like to propose concerns not going through the feature
extraction phase, something that was not immediately considered in this paper in order
to be consistent with the approach of Axyon AI, which, as already mentioned, processes
time series by making predictions on the extracted features.
Secondly, I would like to propose alternative approaches presented in the literature.
Starting with ODIN, Outlier Detection in Neural Networks. Odin (Out-of-Distribution
Detector for Neural networks) is an outlier detection network that was introduced in a
paper published in 2017 by Liang et al. Odin is designed to detect out-of-distribution
(OOD) samples, which are samples that are significantly different from the training data
that a neural network was trained on. The key idea behind Odin is to use the
temperature scaling technique, which involves scaling the logits (the pre-softmax outputs)
of a neural network by a temperature parameter. By doing so, the probability
distribution of the network’s outputs becomes softer, and the differences between
in-distribution (ID) and OOD samples become more pronounced. The temperature
scaling technique has been previously used to improve the calibration of neural networks,
but Odin uses it in a novel way to detect OOD samples. In addition to temperature
scaling, Odin also uses a perturbation approach to further enhance its outlier detection
capabilities. Specifically, it applies a small perturbation to the input of a neural network
and computes the change in the output probabilities. OOD samples are expected to
exhibit larger changes in the output probabilities than ID samples, and Odin uses this
difference as a signal to detect outliers. Odin is a simple and effective method for
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detecting OOD samples, it has been evaluateed on various dataset in a wide range of
fields where outlier detection is important, in particular as computer vision, natural
language processing, and speech recognition.
The other proposal as a possible future approach to the problem is contrastive learning.
Contrastive learning is a popular technique used in machine learning to learn
representations that capture similarities and differences between data points. In the
context of anomaly detection on time series data, contrastive learning can be used to
learn a representation of the normal behavior of the time series, and then use this
representation to identify anomalies. The basic idea behind contrastive learning is to
learn a representation of a data point by contrasting it with other data points in the
dataset. In the case of time series data, the contrastive learning algorithm would take a
window of time series data and try to learn a representation that distinguishes this
window from other windows of data. The algorithm would repeat this process for
different windows of data, building up a representation of the time series. Once the
algorithm has learned a representation of the normal behavior of the time series, it can
use this representation to identify anomalies. The algorithm would compare each window
of data in the time series to the learned representation of the normal behavior. If the
window of data is significantly different from the normal behavior, the algorithm would
flag it as an anomaly. There are many different contrastive learning algorithms that can
be used for anomaly detection on time series data, including autoencoders, siamese
networks, and triplet networks. These algorithms differ in their architecture and training
objectives, but they all share the goal of learning a representation that captures the
similarities and differences between data points.

56



Bibliography
[1] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey.

ACM computing surveys (CSUR), 41, pp. 1–58, 2009.

[2] Douglas M Hawkins. Identification of Outliers. Springer, 1980.

[3] Cameron Wolfe. Confidence Calibration for Deep Networks: Why and How? . 2018.

[4] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern

neural networks. International Conference on Machine Learning, 2017.

[5] Sunil Thulasidasan, Shafin Rahman, Zhongzheng Cheng, Yoshua Bengio, and Kevin

Murphy. On mixup training: Improved calibration and predictive uncertainty for deep neural

networks. Advances in Neural Information Processing Systems, 2019.

[6] Muhammad Naeem and Waqar Hussain. Measuring Calibration in Deep Learning.

Neurocomputing, 474, pp. 472–482, 2022.

[7] Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Enhancing the reliability of

out-of-distribution image detection in neural networks. International Conference on Learning

Representations, 2018.

[8] Amirata Ghorbani, Yifan Zhou, Yifan Ye, Bo Li, and Lina Jiang. MixMDN:

Out-of-Distribution Detection Using Gaussian Mixture Models. Neural Networks, 2022.

[9] Eric Deng. Gaussian Mixture Models | Clustering Algorithm Python. 2021.

[10] Kumar Neeraj. Gaussian Mixture Models: What are they \& when to use? - Data

Analytics . 2022.

[11] Joseph Rocca. Understanding Variational Autoencoders (VAEs). Towards Data Science,

2021.

[12] SeongUk Jang, Jaewoo Kim, and Changick Kim. Deep Clustering with Variational

Autoencoder . Advances in Neural Information Processing Systems, 2019.

[13] Pranav Rajpurkar, Awni Y Hannun, Masoumeh Haghpanahi, Codie Bourn, and Andrew

Y Ng. Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv

preprint arXiv:1707.01836, 2017.

[14] Mohammad Javad Shamsollahi, Ravi Srivastava, and Zhangyang Wang. Enhancing The

Reliability of Out-ofdistribution Image Detection in Neural Networks. arXiv preprint

arXiv:2007.09615, 2020.

[15] Xi Chen, Cheng Xie, Hongyu Ma, Yulan Liao, Dong Wang, Yong Xia, and Xiaoming

Liu. ECG Heartbeat Classification: A Deep Transferable Representation. 2018.

[16] Physionet. MIT-BIH Arrhythmia Database. 1999.
56



[17] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W. Kempa-Liehr. Time

Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh – A Python package).

Neurocomputing, 2018.

[18] Things Solver. Time series Anomaly Detection using a Variational Autoencoder (VAE). ,

2020.

[19] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic

variational inference. The Journal of Machine Learning Research, 2013.

[20] Muhammad Munir, Saqib Ali Siddiqui, Andreas Dengel, and Sheraz Ahmed. DeepAnT:

A Deep Learning Approach for Unsupervised Anomaly Detection in Time Series. IEEE

Access, 2020.

[21] Rui Wang, Chongwei Liu, Xudong Mou, Kai Gao, Xiaohui Guo, Pin Liu, Tianyu Wo,

and Xudong Liu. Deep Contrastive One-Class Time Series Anomaly Detection. arXiv, 2022.

57


	List of Figures
	List of Tables
	Introduction
	Context and Motivations
	Contributions
	Structure of the Thesis

	Literature Review
	Anomaly detection
	Types of time series anomalies
	Latent anomaly detection
	Latent variable models
	Gaussian Mixture Models
	Variational Autoencoder

	Time series analysis
	Trend estimation
	Extraction of features

	Confidence calibration

	Method
	Dataset
	Workflow
	Synthetic noise injection
	Feature extraction
	Classifier training
	Anomaly detection
	Class-conditioned likelihood estimation
	Classifier re-training


	Results
	First Attempt: Gaussian Mixture Model on features extracted from time series
	Mix 90-10
	Mix 80-20
	Mix 70-30
	Mix 60-40
	Observations on first attempt

	Second Attempt: Noise injection on features extracted
	Mix 80-20
	Mix 70-30
	Mix 60-40
	Observations on second attempt

	Third Attempt: Analysis on time series
	Mix 90-10
	Mix 80-20
	Mix 70-30
	Mix 60-40
	Observations on third attempt

	Fourth Attempt: Variational Autoencoder on features extracted
	Mix 85 - 15 with noise injection before features extraction
	Mix 80 - 20 with noise injection after features extraction
	Observations on fourth attempt


	Conclusions and future improvements
	Conclusions
	Future improvements


