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“Tortoise: I don’t see why you call them ”defective”. It is simply an inher-
ent fact about record players that they can’t do all that you might wish
them to be able to do. But if there is a defect anywhere, is not in THEM, but
in your expectations of what they should be able to do! And the Crab was
just full of such unrealistic expectations”
—Contracrostipunctus - G.E.B. - Douglas Hofstadter
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Abstract

Ensemble Learning (EL) is a machine learning technique that involves combining multiple individual models,
called weak learners, in order to produce more accurate predictions. The idea behind EL is that by aggregating
the predictions of multiple models, the final prediction can be more robust, accurate, and generalizable than that
of any of the single weak learners alone.

Boosting is a powerful EL method in which the ensemble of models is constructed iteratively, so that at each
iteration the training of new learners focuses on the training examples for which the previously selected models
perform poorly.

Boosting algorithms have been successfully applied to various domains, including image and object recogni-
tion, text mining, finance and a number of other fields. They are particularly effective in scenarios where high
accuracy and stability are crucial, making them a valuable tool in the field of machine learning.

Qboost is a boosting algorithm first introduced by Neven et al. in 2008 that casts the problem of EL into
a hard combinatorial optimization problem that takes the form of a QUBO (Quadratic Unconstrained Binary
Optimization) problem or, equivalently, an Ising model optimization.

Instances of this class of problems can be NP-complete and therefore difficult to tackle with classical digital
computing methods and algorithms like simulated annealing (SA). Hence, alternative computational methods
like the ones developedwithin the frameworkof quantumcomputing are of high interest for this class of problems.
Inparticular, adiabatic quantumannealing (AQA)has been recently used formultiple demonstrations in thefields
of particle detection, aerial imaging and financial applications. Its implementation on neutral atom processors, a
type of adiabatic quantum hardware, has yielded promising results in terms of practical usefulness and scalability.

This thesis aims to develop, test and benchmark a Qboost-based algorithm in the context of multi-label clas-
sification problems. The project matured during an internship experience at Axyon AI, a FinTech company
that serves quantitative asset managers through its proprietary machine learning software platform. The research
and implementation showcased in this work serve as an initial step for a broader project designed to incorporate
quantum-based algorithms and computational resources into Axyon AI’s technological stack.

Axyon AI exploits EL and boosting in its machine learning pipeline. The scope of this project is to build a
proof of concept for the improvement of the performance of the ensemble building step in the pipeline with
respect to the currently employed EL algorithm.

The proposed techniques facilitate a broader exploration of the configuration space of the candidate models
for the ensemble formation. It is hypothesized that this approachmaypotentially lead tomaximizing performance
and capturing untapped potential.

The outcomes of implementing and evaluating the new algorithms indicate that there are opportunities for
enhancing the ensemble building process, as compared to the existing approach atAxyonAI. Specifically, a refined
version of Axyon’s current ensembling algorithm, which was crafted to serve as a performance benchmark against
the Qboost-based approach, and the Qboost-basedmodel itself, demonstrate improvements. These were not just
in terms of overall performance but also in mitigating overfitting.
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1
Introduction

This chapter outlines the fundamental concepts and methodologies that serve as the basis for the research con-
ducted in this thesis. Initially, the essential definitions and techniques in the field of ensemble learning are pre-
sented. This is followedby an introduction toQuadraticUnconstrainedBinaryOptimization (QUBO)problems,
alongwith a discussion of relevant optimizationmethods. The chapter concludeswith an overview of the original
Qboost algorithm, as described in Neven et al. (2008) [2], which forms the foundation for the present study.

1.1 Ensemble Learning
The expression ”EnsembleLearning” (EL) refers to themachine learning (ML) frameworkwheremultiplemodels,
often termed ”weak learners” or ”base learners” are trained to solve the same problem and their predictions are
aggregated to form a single, unified prediction that is the expression of a ”strong learner”. The genesis of EL
techniques can be traced back around the ’90 when several foundational works have been published introducing
some fundamental methods in this field like Bagging [3], Boosting [4] and Stacking [5] . Over the years, EL has
proven to be remarkably effective in various applications ranging fromnatural language processing [6] to financial
forecasting [7]. Its robustness in handling noisy, imbalanced, and incomplete data sets gives it an edge over single-
model approaches. Moreover, by aggregating predictions frommultiple models, EL naturally embodies a form of
regularization, reducing the risk of overfitting.

1.1.1 Deep Ensemble Learning
Deep Ensemble Learning (DEL) is an extension of traditional Ensemble Learning, which incorporates Deep
Learning (DL) models as base learners. DL models have shown exceptional predictive accuracy across various
applications, such as computer vision and natural language processing.
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One of the challenges of DEL is its computational intensity. Training multiple DL models, each with po-
tentially millions of parameters, requires significant computational resources. This is in contrast to traditional
ensemble methods that use simpler models like Decision Tree Classifiers, Support Vector Machines (SVM) , or
k-Nearest Neighbors (k-NN), which are less computationally demanding.

Furthermore, deep learning models tend to be less diverse compared to simpler models. This lack of diversity
can affect the ensemble’s performance, as ensembles benefit from diversity among the base learners [8].

1.1.2 Mathematical Framework
Consider a datasetD = {(x1, y1), (x2, y2), . . . , (xS, yS)}, where S is the size of the dataset, x represents the feature
vectors and y represents the corresponding labels or outcomes. Each weak learner hi produces a hypothesis hi :
Rm → Y, whereY is the output space (eitherR for regression or {0, 1} for classification).

The ensemble learning framework utilizes an aggregation function φ to combine these multiple hypotheses
into a single, strong hypothesisH, as depicted in Equation (1.1):

H(x) = φ(h1(x), h2(x), . . . , hN(x)) (1.1)

1.1.3 Construction ofWeak Learners
There are primarily two dimensions to consider when constructing the set {hi} of weak learners.

Architecture of Learners

• Homogeneous EL: All base learners share the same architecture. They differ only in the parameters ob-
tained after training.

• Heterogeneous EL: The ensemble consists of a diverse set of models with different architectures.

Figure 1.1: Left: Homogeneous EL; Right: Heterogeneous EL

2



TrainingMethodology

• Parallel EL: Weak learners are trained independently of each other. The primary advantages lies in the
diversity created through independent training. Moreover, Parallel EL offers parallelization possibilities
for the training of the base learners.

• Sequential EL: Weak learners are trained sequentially, each one learning from the errors of its predeces-
sors. Therefore, the main advantage of sequential methods is to exploit the dependence between the base
learners.

Figure 1.2: Top: Sequential EL; Bottom: Parallel EL

1.1.4 AggregationMechanisms
Once the set of weak learners is constructed, the next task is to define the aggregation function φ. Several com-
monly used methods are:

• Majority Voting: In the case of classification problems, the label that receives the majority of votes is
chosen.

• Soft Voting: Probabilities of each label are averaged, and the label with the highest average probability is
chosen.

3



• Learners Averaging: The outputs from the weak learners are averaged.

φ =
1
N

N∑
i=1

hi (1.2)

• LearnersWeighted Averaging: Aweighted average of the outputs is taken, where theweights are learned
during a training phase.

φ =

N∑
i=1

wihi, where
N∑
i=1

wi = 1 (1.3)

1.1.5 Review of Principal EnsemblingMethods
Ensemble methods can be primarily categorized into three main types: Bagging, Boosting, and Stacking. Each
of these methods has its own unique approach in building an ensemble of weak learners to form a strong learner.
They differ substantially in the way they train these weak learners and aggregate their predictions. Below each of
these methods is briefly discussed.

Bootstrap Aggregating (Bagging)

Introduced by Leo Breiman in 1996 [3], the Bagging algorithm takes bootstrap samples from the data set and
trains a model on each of these samples. In the case of classification problems, a majority vote is taken, while for
regression problems, the final prediction is often obtain through learners averaging aggregation.

H(x) =
1
N

N∑
i=1

hi(x) (1.4)

WhereH(x) is the final prediction and hi(x) is the ith base learner’s prediction.

Random Forests

Random Forests, an application of bagging to tree learners, were proposed by Ho in 1995 [9] and further devel-
oped by Breimann (2001) [10]. While traditional bagging uses all features to make the best split in decision trees,
Random Forests choose a random subset of features at each split, making the trees more independent and diverse.
This is an effective way to control the variance in tree learning, since when dealing with very deep trees they tend
to overfit easily the training dataset.

Boosting

Boosting methods train learners in a sequential manner. Each new model corrects the errors of its predecessor,
adapting based on themisclassifications or residuals from the previousmodels. Below, two of themost commonly
used boosting algorithms and their characteristics are explored.

4



AdaBoost

AdaBoost, short for ”Adaptive Boosting,” was one of the first successful boosting algorithms. It was proposed
by Yoav Freund and Robert Schapire [4]. AdaBoost focuses on improving the performance of decision trees on
binary classification problems. The algorithm adjusts the weights of misclassified data points at each iteration,
encouraging the model to focus on harder-to-classify examples. The final prediction is a weighted sum of the
predictions from individual learners.

H(x) =
N∑
i=1

ωithi(x) (1.5)

WhereH(x) is the final prediction, ωi is the weight of the ith weak learner, and hi(x) is the ith weak learner.

Gradient Boosting

Gradient Boosting, proposed by Jerome Friedman [11], generalizes AdaBoost by allowing optimization of arbi-
trary differentiable loss functions. In essence, each new model fits to the residuals of the combined ensemble of
existing models. This allows the method to be used both for regression and classification problems.

Hm(x) = hm−1(x) +
N∑
i=1

αm∇L(y,Hm−1(x)) (1.6)

WhereL(y,H(x)) is the loss function, αm is an optimizablemultiplier, and∇L(y,H(x)) represents its gradient.

Stacking

Stacking, also known as ”Stacked Generalization,” has been introduced by Wolpert in 1922 [5]. is an ensemble
technique in which after having trained several weak learners, a second-level model, also known as ”meta-learner”,
is trained to make a final prediction based on the predictions of the ones obtained from the base learners during
the first training phase.

H(x) = f(h1(x), h2(x), . . . , hN(x)) (1.7)

HereH(x) is the final prediction, f is the meta-learner, and hi(x) are the base learners.

Multi-level Stacking

Some stacking implementations take it a step further by implementing multiple layers of meta-learners, each tak-
ing as input the predictions of the previous layer and providing a set of predictions for the next layer.

H(x) = fk(. . . f2(f1(h1(x), h2(x), . . . , hN(x))) . . .) (1.8)

5



1.1.6 Ensemble Building as a Combinatorial Problem

The process of ensemble building can be viewed through the lens of a combinatorial optimization problem. In
essence, the objective is to find the optimal combination of base learners that maximizes the performance of the
ensemble whileminimizing overfitting and computational cost. This involves selecting from a large set of possible
base learners, eachwith its ownhyperparameters, anddetermining the bestway to aggregate their predictions. The
space of all possible combinations grows exponentially with the number of base learners and their configurations,
making this a non-trivial task.

This combinatorial optimization perspective on ensemble building naturally leads us to the realmofQuadratic
Unconstrained Binary Optimization (QUBO) problems. QUBOprovides a mathematical framework for solving
such complex optimization problems and can be particularly useful for efficiently navigating the combinatorial
space of ensemble configurations. The following sectionwill delve deeper intoQUBOproblems and explore their
applicability in optimizing ensemble learning methods.

1.2 QUBO problems

Quadratic Unconstrained Binary Optimization (QUBO) problems serve as a versatile framework for tackling a
broad array of combinatorial optimization challenges. In these problems, the objective is to find a vector v that
minimizes a quadratic function. The function is generally represented as:

min
{v}

∑
i
aivi + 2

∑
i

∑
j>i

bi,jvivj + c

 (1.9)

Here, vi are binary variables taking values in {0, 1}, ai are the linear coefficients, bi,j are the quadratic coeffi-
cients, and c is a constant term. This formulation allows for a wide range of real-world problems to be encoded
into a QUBO structure, making it a powerful tool for optimization. For an extensive survey of QUBO problems
applications and solutions methods see [12].

The quadratic formH to be minimized can also be expressed in matrix-vector form as:

H(v) = vTQv (1.10)

The matrix Q is a symmetric matrix, where the diagonal elements correspond to the linear coefficients ai and
the off-diagonal elements represent the quadratic coefficients bi,j:

Q =



a1 b1,2 b1,3 · · · b1,N
b1,2 a2 b2,3 · · · b2,N
b1,3 b2,3 a3 · · · b3,N
...

...
...

. . .
...

b1,N b2,N b3,N · · · aN

 (1.11)
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1.2.1 Equivalence between QUBO and Ising model

The QUBO framework is closely related to Ising Models:

H(s) = −
∑
⟨i,j⟩

Jijsisj −
∑
i
hisi (1.12)

where si are spin variables taking values in {−1, 1}, Jij are the interaction coefficients, and hi are the external
magnetic fields. The transformation between QUBO and Ising models can be achieved through a simple change
of variable:

si = 2vi − 1 (1.13)

BothQUBOand Isingmodels are frameworks for solving combinatorial optimization problems, their suitabil-
ity varies depending on the problem at hand as well as the available solvers. QUBO formulations are often more
natural for problems that are inherently binary, such as task scheduling or network design. On the other hand,
Isingmodels aremore suitable for problems that can bemapped to physical systems, such as spin glasses or protein
folding. QUBO and Ising formulations of many different NP-complete and NP-hard problems are reported in
[12] and [13]

1.2.2 Computational Complexity of QUBO Problems

As demonstrated in [14], QUBO problems belong to the complexity class FPNP. This class comprises functional
problems that can be solved by a deterministic Turing machine operating in polynomial time, provided it has
access to an oracle for NP-complete problems. This means that a solution for such problems can be computed in
polynomial time if one has access to a so-called ”NP oracle” which is a ”magic box” that can instantaneously solve
queries related to NP-complete problems.

However, no polynomial-time algorithm is currently known for solving generalNP problems unless the P =

NP conjecture is proven to be true.
Given the inherent complexity ofQUBOproblems, a variety of algorithms have been developed to tackle them,

as documented in [12]. In this thesis work, focus will be on Annealing-based approaches. Specifically, Simulated
Annealing (SA) will be considered for the implementation in the context of digital solvers. An overview of Quan-
tum Annealing (QA) instead will be will be given with the prospect of future implementation in the context of
quantum, quantum-hybrid, and quantum-simulator solvers.

1.3 Annealing

Annealing is a concept that originates from thermodynamics, particularly in the process of slowly cooling a mate-
rial to remove defects and optimize the arrangement of its atoms. The term has been metaphorically extended to
the field of optimization algorithms to describe methods that seek to find the most optimal solution to a problem
by exploring the solution space in a structured yet probabilistic manner.
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In the physical process of annealing, a material is heated to a high temperature where its atoms become highly
disordered. The material is then slowly cooled, allowing the atoms to settle into a low-energy, highly ordered
state. The key to this process is the slow cooling rate, which allows the system to escape local minima in its energy
landscape and eventually find the global minimum, corresponding to the most stable atomic configuration.

1.3.1 Simulated Annealing
The concept of annealing has been adapted to solve complex optimization problems in computer science. The
most famous algorithm inspired by annealing is simulated annealing, introduced in 1983 [15]. In SA, the objec-
tive function to be minimized plays a role analogous to the Hamiltonian in physics. The algorithm starts with a
random solution and iteratively moves to neighboring solutions. The acceptance of a new solution is controlled
by a parameter analogous to temperature, which decreases over time.

In the original formulation byKirkpatrick et al., the probabilityP of accepting a new solution s′ from a current
solution s is given by:

P(s → s′) =

1 if Es′ < Es,

e−
Es′−Es

kT otherwise.

Algorithm 1.1 Simulated Annealing Algorithm
Require: Initial state, initial temperature, cooling rate
Ensure: Optimal state minimizing f
1: Initialize: current_state, temperature, cooling_rate
2: while temperature > 1
3: new_state = neighbor(current_state)
4: Δf = f(new_state)− f(current_state)
5: if Δf < 0 or exp(−Δf/temperature) > random(0, 1)
6: current_state = new_state
7: end if
8: temperature = temperature * cooling_rate
9: end while
10: return current_state

1.3.2 QuantumAnnealing
AdiabaticQuantumComputing (AQC) is a computational paradigm that heavily relies on the principles ofQuan-
tum Annealing (QA). The idea is to encode the solution to a computational problem in the ground state of a
quantumHamiltonian and then evolve the system according to the Adiabatic Theorem (AT).

The adiabatic approximation states that if a quantum system is initially in an eigenstate |ε0(0)〉 of a time-
dependent HamiltonianH0(t), its evolution, as governed by the Schrödinger equation
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i
∂|ψ(t)〉

∂t
= H(t)|ψ(t)〉

will approximately keep the system in the corresponding instantaneous ground state |ε0(t)〉 ofH(t), provided
thatH(t) changes ”sufficiently slowly.”

Quantifying the exact ”slowness” of this variations is the subject of AT. It provides a sufficient condition for
the success of the computation and, in doing so, provides the run time of a computation in terms of the gaps
between eigenvalues Δ of theHamiltonian and theHamiltonian’s time-derivative. The run time tf of an adiabatic
algorithm scales at worst asO(1/Δ3), and if theHamiltonian is varied sufficiently smoothly, this can be improved
toO(1/Δ2) up to a polylogarithmic factor in Δ [16].

In [13] can be found an estimate of the ”slowness” of the adiabatic evolution dependant on the number of
variablesN involved in the optimization problem at hand:

T = O
[
exp
(
αNβ)] (1.14)

in order for the system to remain in the ground state, for positive coefficients α and β, asN → ∞.

Algorithm 1.2Quantum Annealing Algorithm scheme
Require: Initial HamiltonianHinitial, problemHamiltonianHproblem
Ensure: Optimal quantum state
1: Initialize: quantum system in ground state ofHinitial, s = 0
2: while s < 1
3: H(s) = (1− s)Hinitial + sHproblem
4: Evolve quantum system underH(s) according to the Schrödinger equation
5: s = s+ Δs
6: end while
7: return Measured quantum state

The question of whether Quantum Annealing (QA) can significantly outperform traditional algorithms like
Simulated Annealing (SA) is still a matter of active debate [17]. This issue has attracted considerable research at-
tention, especially with the advent of quantum annealers and their simulators developed by various private com-
panies. The field is marked by divergent findings and continuous advancements in both quantum and classical
computing technologies. As such, it remains a dynamic and rapidly evolving area of research.

1.4 Qboost algorithm
The work presented in this thesis and the algorithms developed during my internship at Axyon AI are deeply
influenced by the research conducted by Neven et al. Their paper, titled “Training a Binary Classifier with the
Quantum Adiabatic Algorithm” together with following papers serve as foundational guides for trying to imple-
ment an improved version of the ensemble building step in the AxyonML pipeline, [2] [18] [1].
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Algorithm 1.3Qboost (T ≤ Q) - fromNeven et al. [1]
Require: Training and validation data {xs}, dictionary of weak classifiers {hi(x)}, regulariza-

tion parameters λmin, λstep, and λmax
Ensure: Strong classifierHω(x)
1: Initialize: ∀s, dinner(s) = 1

S , Tinner = 0; empty strong classifierHω(x); storage for a pool of
Q candidate weak learners {hq(x)}

2: repeat
3: Optimize the members of the dictionary {hi(x)} according to the current dinner(s)
4: From {hi(x)} select the Q − Tinner weak classifiers that have the smallest training error

rates
5: for λmin : λstep : λmax

6: Optimize ωopt = argmin
ω

(∑S
s=1

(
1
Nys
∑N

i=1 ωihi(xs)− 1
)2

+ λ‖ω‖0
)

7: Set Tinner = ‖ω‖0
8: Construct strong classifierH(x) = sign

(∑N
i=1 ωihi(x)

)
9: Measure validation error ofH(x) on unweighted validation set
10: end for
11: Save ωopt,Tinner,H(x) and the validation error from the optimization run that achieved

the lowest validation error so far
12: Update dinner(s) = dinner(s)

(
ys
∑N

i=1 ωihi(xs)− 1
)2

13: Normalize dinner(s)
14: Delete from the pool {hq(x)} theQ− Tinner weak learners for which ω = 0
15: untilValidation error stops decreasing
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In particular, in the original paper by Neven [2] the strong classifier prediction is given by:

y = H(x) = sign

( N∑
i=1

ωihi(x)

)
(1.15)

where x ∈ RM are the input patterns to be classified, y ∈ {−1, 1} is the output of the classifier, hi : x 7→ {−1, 1}
are the weak classifiers and ωi ∈ {0, 1} are the set of binary weights to be optimized during QUBO solving
procedure.

It is clear by looking at Alg.1.3, that the problem of building the ensemble is reduced to iteratively solve the
following QUBO problem:

ωopt = argmin
ω

 S∑
s=1

(
1
N
ys

N∑
i=1

ωihi(xs)− 1

)2

+ λ‖ω‖0

 (1.16)

The term S refers to the number of samples, and λ is a regularization parameter that controls the numerosity
of the ensemble penalizing the L0 norm of the weights array ω . The objective function 1.16 aims tominimize the
squared error between the binary label ys and the average of the binary predictions produced by the weak learners.
The re-weighting follows the conventional boosting procedure described in 1.1.5, with a significant distinction:
the process operates over a pool of base learners, rather than optimizing each learner sequentially.

The training dataset is dynamically re-weighted according to the predictive performance of the current strong
classifierH(x) over each data sample xs.

The experiments conducted in [2] and in [1] shows thatQboost oftenoutperformsAdaBoost solidly, especially
in terms of classifier compactness, while maintaining comparable accuracy.
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2
Problem framework

AxyonAI is a technology company specialized in the development of artificial intelligencemodels for quantitative
assetmanagement. The company leverages advancedmachine learning techniques to optimize financial portfolios,
manage risks, and build investment strategies. One of the keyML framework employed by Axyon AI is Learning
to Rank (LtR), which is instrumental in sorting and prioritizing assets based on multiple features and criteria.

Figure 2.1: Example of LtR data sample exploited at Axyon AI. HereH is the time horizon at which the asset returns are
evaluated.

13



2.1 Learning to RankMethods
Learning to Rank (LtR) is a specialized paradigm withinML tailored for ranking. It is fundamentally concerned
with constructing a model capable of arranging a set of items in a specific order based on certain criteria. The LtR
methods can be broadly classified into three categories: Point-wise, Pairwise, and List-wise methods.

1. Point-wise Methods: Point-wise approaches treat the ranking task as either a regression or classification
problem. Each item is independently scored, and these scores are subsequently utilized for sorting the
items. The mathematical formulation can be represented as f(x) → y, where f is the ranking function, x
is the feature vector, and y is the score.

2. Pairwise Methods: Pairwise approaches consider the relative ordering of item pairs. The objective is to
minimize the number of incorrectly ordered itempairs. RankNet [19] is a commonly employed algorithm
in this category, which has the merit to exploit a differentiable loss function.

3. List-wiseMethods: List-wisemethods take into account the entire list of items and aim to optimize a list-
wise loss function. Normalized Discounted Cumulative Gain (NDCG) is often used as the evaluation
metric. Algorithms like ListNet [20] are popular choices for List-wise ranking.

Axyon AI employs a combination of these methods to build robust ranking models for asset management.

2.2 Multilabel Classification
Axyon AI has defined an effective way to map LtR problems to multi-label classification problems.

In ML, classification tasks are categorized into different types such as binary, multi-class, and multi-label clas-
sification. While binary and multi-class classification aim to classify instances into one of two or more classes,
multi-label classification is concerned with assigning a set of target labels to each instance. In other words, an
instance can belong to multiple classes simultaneously.

Formal Definition

Mathematically, a multi-label classification problem is defined as follows:
LetX be the feature space such thatX ⊆ Rd, where d is the number of features. Let Y be the label space where

Y = {y1, y2, . . . , yk}, with k representing the number of distinct labels.
A training setD = {(x1,Y1), (x2,Y2), . . . , (xn,Yn)}, where xi ∈ X is a feature vector, and Yi ⊆ Y is the set

of labels corresponding to xi.
The goal is to learn a function h : X → 2Y, where 2Y is the power set of Y, such that h(xi) approximates Yi as

closely as possible for all xi ∈ X.
Common loss functions for multi-label classification include:

• Hamming Loss:

HammingLoss(Y, h(x)) =
1
|Y|
∑
y∈Y

I(y ∈ Y⊕ y ∈ h(x))
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• Jaccard Loss:

JaccardLoss(Y, h(x)) = 1− |Y ∩ h(x)|
|Y ∪ h(x)|

ConvertingMulti-label to Binary Classifications

One common approach to solve multi-label classification problems is to decompose them into multiple binary
classification problems. For each label yi ∈ Y, a separate binary classifier hi : X → {0, 1} is trained. The final
multilabel classifier h(x) aggregates the output of all binary classifiers as h(x) = {yi|hi(x) = 1, i = 1, . . . , k}.

2.3 Ensemble Learningwith Greedy Algorithms
Greedy algorithms form a category of algorithms thatmake locally optimal choices at each step, aiming for a global
optimum. These algorithms are efficient and easy to implement but are not always guaranteed to find the optimal
solution. In fact, the portion of the space of possible configurations explored with this kind of procedure is tiny
with respect to the size of the space itself, and the risk of reaching a sub-optimal solution is considerably high.
In particular, we can make a rough estimate of the fraction of space explored by considering the total number of
possible configurations for an ensemble ofKmodels formed starting from a pool ofN candidates and the number
of configurations actually screened through this procedure:

portion of conf. space explored =
NK

2N

In the context of Axyon AI, a greedy iterative ensemble selection approach tailored for multi-label classifica-
tion problems is exploited. This procedure is inspired by the works [21] & [22], and aims to optimize ensemble
performance iteratively.

Greedy Iterative Ensemble Selection Procedure

Typically, the procedure involves:

• N = 5000 candidate models.

• T = 24 meta-validation runs, each lasting 3 months.

• Scores s(i)t represent a specific performance metric of model i in run t.

• f is generally a risk-adjusted performancemetric computed as S(·) = (s(·)t −sbaseline)
σ(s(·)t )

, where sbaseline is a baseline
value.

• Filtering is done based on a one-tailed t-test, comparing each model against a random baseline.

The algorithm proceeds as outlined in Alg.2.1.
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Algorithm 2.1 Greedy Iterative Ensemble Selection Procedure

Require: Pool ofN candidatemodelswith scores s(i)t acrossT time periods, statistical function
f, maximum ensemble sizeK

Ensure: Optimized ensemble E[k∗]
1: Initialize: Empty ensemble E[0], pool ofN candidates, set k∗ = 0
2: Compute summary scores S(i) = f(s(i)1 , s(i)2 , . . . , s(i)T ) for each candidate model i
3: Filter out candidates based on threshold or statistical test on S(i)
4: Find top-performing model i∗ with highest S(i∗)
5: Set E[1] = i∗, k∗ = 1
6: Remove i∗ from the pool of candidate models
7: repeat
8: for each remaining candidate j
9: Form potential ensemble E[k∗+1] by combining E[k∗] and j
10: Compute new ensemble score S(E[k∗+1]) by evaluating the combined model perfor-

mance
11: If S(E[k∗+1]) > S(E[k∗]), then set E[k∗+1] = E[k∗] ∪ j, k∗ = k∗ + 1
12: end for
13: Remove models added to E[k∗] from the pool of candidate models
14: until k∗ = K or no more candidates remain

Evaluation metrics

Examples of metrics widely used in finance to evaluate quantitative investment strategies are Sortino and Sharpe
ratios. In Axyon AI context Rank-ic metric is exploited to evaluate the performance of candidate models and
ensembles, together with risk-adjusted versions of it that resemble in their definitions Sortino and Sharpe ratios.

In particular:

• Rank-IC (RIC): The Rank-IC (RIC) is a specialized application of Spearman’s Rank Correlation Co-
efficient, designed to measure the linear correlation between two sets of ranked data. It evaluates the
monotonic relationship between the two variables, quantifying both the strength and the direction of
this relationship. The RIC is mathematically defined as:

Rank-ICt = ρR(X)t,R(Y)t =
cov(R(X)t,R(Y)t)

σR(X)tσR(Y)t
(2.1)

where R(Xi) and R(Yi) denote the ranks of the variables X and Y, respectively. The coefficient can take
values from -1, representing a perfect negative correlation, to +1, indicating a perfect positive correlation.

• SortinoRatio: TheSortinoRatio serves as an indicator of the risk-adjustedperformance of an investment
asset or portfolio. It contrasts the asset’s return against the downside risk. The ratio is defined as follows:

Sortino Ratio =
R− T
DR

(2.2)

Here, R is the asset’s return, T is the target or required rate of return, and DR is the downside standard
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deviation. In the Axyon framework instead of the Asset’s return it is considered the Rank-IC associated
with the model predictions and its downside standard deviation.

• SharpeRatio: TheSharpeRatio is anothermetric that evaluates risk-adjusted returns. Unlike the Sortino
Ratio, it considers the total volatility of the investment. The ratio is calculated as:

Sharpe Ratio =
R− Rf

σ
(2.3)

In this equation, R is the asset’s return, Rf is the risk-free rate, and σ represents the asset’s standard devia-
tion.
In the Axyon framework instead of the Asset’s return it is considered the Rank-IC associated with the
model predictions and its downside standard deviation.

2.3.1 Creating a Benchmark
The greedy ensemble selection procedure has been refactored in order to optimize LtR metrics obtained directly
from the ensembled predictions and not, as it is originally done, optimize aggregated metrics over long period of
time for each of the weak learner considered in the procedure.

This adaptation aims to establish a reliable benchmark against which we can compare the Qboost implemen-
tation.

This more direct approach ensures a more aligned comparison when evaluating the performance of Qboost,
which considers directly the multi-label predictions of the learners.
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3
Qboost for Multi-Label classification and

Learning to Rank

Given the description of the original Qboost algorithm given in section 1.4 here we want to describe how it has
been modified in order to be exploited in the context of multi-label classification and LtR problems.

3.1 Qboost on multi-label classification problem

In order to frame the ensembling ofweak classifiers built for themulti-label classificationproblem into theQboost
optimization procedure we note that the former can be interpreted as a sequence of B binary classifiers that work
simultaneously on the same data sample xs. In light of this the first try we perform is tomodify the loss in Eq.1.16
in the following way:

ωopt = argmin
ω

 S∑
s=1

B∑
k=1

(
1
N
ys,k

N∑
i=1

ωihi,k(xs)− 1

)2

+ λ‖ω‖0

 (3.1)

Expanding the square, re-arranging the sums and exploiting the property for which ω2 = ω, we obtain that the
functionH that has to be minimized can be written as the following quadratic form:

H =

N∑
i=1

N∑
j>i

ωiωj

[ S∑
s=1

B−1∑
k=1

hi,k(xs)hj,k(xs)

]
+

N∑
i=1

ωi

[
SK
N2 − 2

N

( S∑
s=1

B−1∑
k=1

ys,khi,k(xs)

)
+ λ

]
+ SK

= ωTQω

(3.2)
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where Q is our QUBOmatrix.

Moreover, modifications have been made to the boosting step of Algorithm 1.3 by introducing a concept
termed ’weak boosting.’ On the one hand, this avoids the retraining of the pool of weak learners {hi} at each
iterative step, a procedure that is surelly more effective but infeasible within the Axyon framework. On the other
hand, it aims to still exploit all the heterogeneity present in the pool of weak learners. Specifically, the procedure
commences with a set of pre-trained learners. At each optimization cycle, the importance of the weak learners’
predictions over a particular data sample is reweighted based on the performance of the strong ensemble on that
particular sample. This approach is expected to significantly impact the optimization under specific conditions:
either if the size of the pool of weak learners {hi} considerably exceeds that of the set of weak learners considered
for optimization {hq}, or if {hi} contains members with a high level of heterogeneity.

The entire optimization procedure is outlined in Algorithm3.1

Algorithm 3.1Qboost multi-label- inner cycle on Axyon data
Require: Validation and test data {xs} related to the performance of a dictionary of weak clas-

sifiers {hi(x)}, regularization parameters λmin, λstep, and λmax
Ensure: Strong classifierHω(x)
1: Compute multi-label- representation of the predictions of {hi(x)} over {xs}
2: Compute multi-label- representation of the real assets performances contained in {xs}
3: Compute accuracy values P(hi(xs)) for each sample in {xs}
4: Initialize: ∀s, dinner(s) = 1, Tinner = 0; empty strong classifierHω(x)
5: repeat
6: Compute P(xs) · dinner(s)∀xs ∈ validation data
7: From {hi(x)} select theQ− Tinner weak classifiers that have the highest weighted accu-

racy over validation data.
8: for λmin : λstep : λmax

9: Optimize ωopt = argmin
ω

(∑S
s=1
∑B−1

k=1

(
1
Nys,k

∑N
i=1 ωihi,k(xs)− 1

)2
+ λ‖ω‖0

)
10: Set Tinner = ‖ω‖0
11: Construct strong classifier H(x) by computing the multi-label- representation of∑N

i=1 ωihi(xs)
12: Measure accuracy ofH(x) on unweighted test set
13: end for
14: Save ωopt,Tinner,H(x) and the validation error from the optimization run that achieved

the highest test accuracy so far
15: Update dinner(s) = 1− P(H(xs))
16: Delete from the pool {hq(x)} theQ− Tinner weak learners for which ω = 0
17: untilValidation error stops decreasing
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3.2 Qboost on a Learning to Rank problem

As outlined in Chapter 2 the framework under which we are trying to solve the ES problem is composed of two
well distinct step:

• Themulti-label classification problem, that the learners directly solves. Meaning to say that the learners
predictions reguards this problem.

• The LtR problem, that is solved through a process that build the rankings from the predictions of the
learners.

The QUBO problem described by eq.3.1 clearly refers to the first problem step, trying to minimize the error
made by the ensemble in the multiple binary classifications it performs over the data. However, the truly final
result of the ML process is the ranking, and it is the accuracy of the ranking that defines how successful our EL
process is. This consideration has led to the attempt to formulate a QUBO problem that takes into account
directly the rankings.

In order to do this we tried to include the covariance between the predicted and realized rankings in the quadratic
form that defines the QUBO problem.

In particular, the covariance squared between two finite-dimensional arrays that defines the rankings seems to
naturally define a QUBO problem:

HCov = −
S∑

s=1

Cov2 (xs⃗, ys⃗) + λ
N∑
i=1

ωi = −
S∑

s=1

Cov2
(

1
N

N∑
i=1

ωihi,s⃗ , ys⃗

)
+ λ

N∑
i=1

ωi (3.3)

where the covariance is defined as:

cov(X,Y) =
1
n

n∑
i=1

(xi − E(X))(yi − E(Y))

(3.4)

and the expected value E(X) is given by the average value since we take a uniform probability distribution.
Some specifications must be made. Covariance is not a limited quantity, it can span in the range [−∞;∞]

and therefore a selection must be made before the QUBO matrix is built. In fact, we are interested only in the
learners, hence in the ensembles, that express a positive correlation with the realized rankings. Therefore, we have
to eliminate from the pool of available weak learners all the ones that shows a negative average covariance with the
realized rankings.

If we proceed to expand Eq. 3.3 through the Eq:3.4, we find:
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HCov
Q =−

S∑
s=1

1
P2
s

[ Ps∑
k=1

Ps∑
z=1

(
xs,kxs,zys,kys,z − xs,kxs,zys,kȳs − xs,kys,kys,zx̄s + xs,kys,kx̄sȳs − xs,kxs,zys,zȳs+

+ xs,kxs,zȳ2s + xs,kys,zx̄sȳs − xs,kx̄sȳ2s − xs,zys,kys,zx̄s + xs,zys,kx̄sȳs + ys,kys,zx̄2s−

− ys,kx̄2s ȳs + xs,zys,zx̄sȳs − xs,zx̄sȳ2s − ys,zx̄2s ȳs + x̄2s ȳ2s
) ]

+λ
N∑
i=1

ωi (3.5)

where Ps represents the number of instruments that must be ranked the day s, that is the dimensionality of the
arrays we are working with. This number is slightly variable in most of the investable universe taken into account
in real world scenarios.

Below we report the extended form of the building blocks of Eq.3.3:

• xs,k = 1
N
∑N

i=1 ωihi,s,k

• x2s,k =
1
N2

[∑N
i=1 ωih

2
i,s,k +

∑
i
∑

j ̸=i ωiωjhi,s,khj,s,k
]

• x̄s = 1
Ps

1
N
∑Ps

v=1
∑N

i=1 ωihi,s,v

• x̄2s =
(Ps+1)2
4N2P2s

[∑N
i=1 ωi +

∑N
i=1
∑N

j=1 ωiωj
]

• xs,kx̄s = (Ps+1)
2N2Ps

[∑N
i=1 ωihi,s,k +

∑N
i=1
∑N

j=1 ωiωjhi,s,k
]

• xs,kxs,z = 1
N2

[∑N
i=1 ωihi,s,khi,s,z +

∑N
i=1
∑N

j=1 ωiωjhi,s,khj,s,z
]

• ȳs =
Ps+1
2Ps

• ȳ2s =
(Ps+1)2
4P2s

With these expressions we are able to write the matrix element of the QUBO that describes Eq:3.3. The full
expressions are reported in Appendix.A

From a practical point of view first it has been implemented the QUBOmatrix representative of each day, and
then all the matrices are summed together. This is done to handle properly the fact that Ps is variable.

After the first implementation of this QUBO problem we tested it on the C10 data-set 4.2. Here we report
some considerations over this preliminary test:

• MatrixQ is symmetric.

• ElementsQij are negative ∀{i, j}.

• Of course, we can make diagonal elements Qii positive by tuning λ, in order to make the form of the
QUBOmatrix non-trivial.

• An exhaustive search was conducted to identify values of λ that would lead to non-trivial solutions ωi =
1∀i ∈ [1;N] and ωi = 0∀i ∈ [1;N]. Despite this effort, the algorithm continued to produce trivial
solutions within a narrow range of λ values, specifically between 1.17529925 and 1.17529927.

Brute forceQUBOoptimizationhasbeen employed to investigate thebehavior of the systemfor low-dimensional
configuration spaces. The analysis reveals the following patterns:
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• When considering the solution where all ωi are set to 1 (for all i in the range [1; N]), it results in a negative
value for the functionHCov. Conversely, if all ωi are set to 0,HCov

Q equals 0. Solutions with intermediate
values of ωi fall between these two extremes.

• As the parameter λ is increased, the non-trivial solutions progressively become positive in an orderedman-
ner. Eventually, the solution where all ωi are 1 also becomes positive. At this juncture, the optimization
algorithm shifts to selecting the alternate trivial solution where all ωi are 0.

Due to these observations, coupled with the computational complexity of the implementation, we opted not
to pursue further extensive testing of this QUBO formulation.

23



24



4
Experiments

The primary objective of this chapter is to present a set of experiments that scrutinize and evaluate the efficacy of
Multi-label Qboost and QUBO optimization methods in the context of the ES step performed at Axyon. There-
fore, There will be a benchmark against Axyon’s current operational standard, a greedy algorithm designed for
ensemble construction. This benchmarking mechanism serves as both a foundational basis and a comparative
backdrop for our experimental evaluation, allowing us to gauge the potential advantages or limitations of imple-
menting Qboost or QUBO algorithms in Axyon’s existing technological stack.

4.1 QUBO solver
In optimizing the QUBO matrices, we used D-Wave’s Neal library, which implements the simulated annealing
algorithm specifically tailored for solving optimization problems in this form. A key feature of the simulated
annealing approach is that it allows for the tuning of various hyper-parameters to guide the search in the solution
space. Here, we pay close attention to two critical hyper-parameters: the ‘number of reads’ and the ‘number of
sweeps.’

The ‘number of reads’ serves as the number of independent repetitions for the annealing process. Each read is
essentially an individual run that could potentially yield a different solution due to its stochastic nature. For our
experiments, we used a typical value of 1000 reads, optimizing for a balance between computational burden and
the quality of the solution.

The ‘numberof sweeps’ represents thenumber ofMarkovChainMonteCarlo (MCMC)updates attempted in
each read. These sweeps are essential for exploring the state space efficiently, especially when dealingwith complex
multi-dimensional problems like those in ensemble learning. We set this parameter to 2000 sweeps, which we
found to be a robust choice through preliminary tests.

The annealing temperature followed a geometric schedule. The initial states for the annealing process were
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selected at random, providing a diverse starting point for each read. As for the temperature range, which sig-
nificantly influences the annealing schedule, its range was determined internally by the solver for each QUBO
problem, contingent on the total node bias in the QUBOmatrix.

For the empirical studies, we utilized two distinct datasets. The MNIST dataset functioned as a ‘toy dataset,’
allowing us to understand the functioning of the Qboost algorithm in a more controlled setting. This experience
laid the groundwork for the real-world application of the algorithm within Axyon’s framework, which involved
testing on Axyon’s proprietary datasets. These datasets offer complex, real-world challenges and are highly repre-
sentative of the kinds of problems Axyon aims to solve through ensemble learning.

4.2 Datasets

This study utilizes a diverse range of datasets, including proprietary feeds such as C10 and FTSEMIB, as well as
the publicMNIST dataset. Each dataset has distinct characteristics that make it suitable for specific aspects of the
research.

4.2.1 C10 Dataset
The C10 dataset is a specialized investable feed used at Axyon. This dataset is unique in that it has only 10 con-
stituents for each trading day. It covers a time span fromMay 2, 2007, to November 26, 2013. The weak learners
predict over a 20-day horizon. Out of the 6.4× 106 total samples, 1.6× 106 are allocated for testing.

4.2.2 FTSEMIB Dataset
The FTSEMIB dataset is associated with the FTSEMIB index, the leading stock market index for the Borsa Ital-
iana. On average, this dataset comprises 40 constituents for each trading day. There are two versions of this
dataset:

• The first version spans from June 4, 2013, to December 23, 2019. It has 1.7 × 107 total samples, with
5.9× 106 designated for testing. The dataset includes 100 weak learners and features a 20-day prediction
horizon.

• The second version covers from June 4, 2013, toDecember 29, 2016. It comprises 4.4×107 total samples,
with 1.5× 107 allocated for testing. This version includes 500 weak learners.

4.2.3 MNISTDataset
The MNIST (Modified National Institute of Standards and Technology) dataset acts as the toy dataset for our
experimentation. Comprising 70,000 samples—60,000 for training and 10,000 for testing—it is primarily used
to validate the Qboost algorithm before deploying it into Axyon’s proprietary frameworks.
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Dataset Prediction Horizon No. of Weak Learners Total Samples Testing Samples
C10 20 days 100 6.4× 106 1.6× 106
FTSEMIB (v1) 20 days 100 1.7× 107 5.9× 106
FTSEMIB (v2) 20 days 500 4.4× 107 1.5× 107
MNIST N/A 150 70,000 10,000

Table 4.1: Data‐set summary

Figure 4.1: Data samples from the MNIST data‐set

4.3 Multi-label Qboost implementation

The objective of this section is to provide a comprehensive examination of the Qboost methodology in a multi-
label classification context. Specifically, the focus is on the performance of Qboost in generating an effective
ensemble of weak learners, which will then be compared against two separate benchmarks: the customized greedy
algorithm acting on the model’s predictions and, on when considering C10 data-set, the standard greedy algo-
rithm which utilizes aggregated metrics. The latter is the algorithm currently deployed in Axyon’s production
environment.

4.3.1 Experiments on toy-scale dataset

Toevaluate the efficacyofQboost in a controlled setting,we employed thewidely-usedMNISTdata-set. Themain
objective was to construct an ensemble that optimizes with respect to the multi-label loss function, as specified in
equation 3.1. The Qboost algorithm, particularly its inner cycle, has been implemented as outlined in Algorithm
1.3, with a major difference that involves the update of the weight factor dinner(s) applied to the training data-set.
Instead of using the update procedure in Alg.1.3, it has been exploited the approach proposed by Leclerc et al.
[23]. The update equation is expressed as follows:
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di+1(s) =
1
Zi

di(s)e−ωiysHi(xs)

ωi =
1
2
ln
(
1− εi
εi

)
(4.1)

εi =
∑
s
di(s) ·Hi(xs) ; Hi(xs) 6= ys

Here,Zi serves as the normalization factor ensuring that di+1 is a probability distribution. The index i denotes
the current optimization cycle.

Execution and Expectations

In this context, it is important to note that the experiment fully executes the Qboost process, including the boost-
ing step. During this stage, we utilized a series of Keras neural networks—specified in Listing 4.1, which were
retrained on the re-weighted data-set. This choice of architecture, featuring a single hidden layer with 32 units, is
intentionally simplistic. The aim is to have ”weak learners” to validate the effectiveness of Qboost on a relatively
straightforward learning task.

The primary expectation from this experiment is a continuous improvement in the ensemble’s performance
across multiple Qboost optimization cycles. Additionally, it is expected that the average performance of the indi-
vidual weak learners will remain stable throughout the optimization process.

1 #Network architecture
2 classifier = Sequential()
3 classifier.add(tf.keras.layers.Flatten(input_shape=self.input_shape))
4 classifier.add(tf.keras.layers.Dense(units=32, activation='relu'))
5 classifier.add(tf.keras.layers.Dropout(rate=0.2))
6 classifier.add(tf.keras.layers.Dense(units=3, activation='sigmoid'))
7

8 #Compile the model with custom accuracy
9 classifier.compile(optimizer=tf.keras.optimizers.Adam(learning_rate = 0.003),
10 loss='binary_crossentropy',
11 metrics=[custom_accuracy])

Listing 4.1: weak learner

4.3.2 Axyon data
The implementation of the Qboost procedure on Axyon framework differs significantly from the one exploited
over MNIST dataset. In fact, it requires the modifications specified in Section 3.1 and follows closely Algorithm
3.1.

Axyon data differs significantly from the MNIST dataset, both in nature and in the computational demands
they require to be processed. In particular, it is worth to remind that in this case a proper boosting step is not
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performed. UnlikeMNIST, where the boosting step was performed by retraining neural networks, in the Axyon
framework the accuracy measure of each weak learner over the training samples is re-weighted depending on how
the ensemble performs on that particular data sample.

This methodological divergence is a direct consequence of computational constraints and the necessity for
greater reproducibility:

• Computational Time: To understand the computational burden, consider that for the FTSEMIB data-
set spanning from 2013 to 2019, each re-training cycle would take approximately 250 hours for 1000
individuals. Given this, running the boosting process for the whole data-set would be computationally
impractical.

• Reproducibility: The Axyon environment relies on a set of complex procedures for signal generation.
Implementing a boosting step that retrains learners would introduce an extra layer of complexity, making
it more challenging to ensure consistent and reproducible results.

The above considerations guided the decision to forgo the boosting step in the implementation of the Qboost
procedure for the Axyon framework. Even so, by weighting the predictions of existing weak learners we tried to
exploit their diversity at best, in order to build an ensemble as heterogeneous as possible.

Metrics from ensembles generated through the Qboost procedure will be contrasted with those from ensem-
bles constructed via greedy algorithms. This comparisonwill encompass both the ensemble-building phase and an
Out-of-Sample period not previously used for ensemble generation by any algorithm involved in the experiment.

The experiment aims tomeasure performance disparities betweenQboost and greedy algorithms, quantify the
effect of ”weak boosting” during the construction phase, and investigate the extent of the relationship between
accuracy metrics used during ensemble building and those employed for evaluating ensemble performance in the
LtR problem.

4.4 QUBO optimizations with a fixed size QUBO ma-
trix

Given the observations that the ”weak boosting”mechanisms in themulti-label Qboost algorithm appear to have
a limited influence during the ensemble-building stage, as evidenced by the experiment described in Section 4.3.2,
it became important to gain a deeper understanding of a single Qboost optimization cycle. Particularly, the outer
loop of the Qboost algorithm, detailed in Algorithm 3.1, converges quickly—often within the first or second
iteration. This rapid convergence prompted further investigation.

Objectives

The overarching aims of this focused study can be divided into two main categories:

1. Effects of Varying the Regularization Parameter λ: The first objective was to explore how adjustments
to the regularization parameter λ influence the resulting ensemble’s quality. A dense schedule of λ values
was adopted to thoroughly cover a wide spectrum of ensemble numerosities.
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2. Stability of Simulated Annealing Solutions: The second objective aimed to evaluate the robustness of
the ensembles generated by the simulated annealing algorithm. Specifically, it examined whether differ-
ent λ values, which yield ensembles of the same numerosity, lead to the incorporation of different weak
learners.

Implications for QUBOOptimization

The quest for such granularity in λ and its impact is driven by the utility of understanding how sensitive the
QUBO optimization process is to changes in the regularization parameter. If it turns out that various λ values
produce ensembles of identical numerosity but with different weak learners, it would suggest that the solution
space explored by the simulated annealing algorithm is populated by many similar local minima generated by dif-
ferent weak learners. This could, in turn, suggest that the pool of available weak learners may need diversification
for more robust optimization.

4.5 Configuration space of different dimensions
This experiment is performed in order to verify both the optimization capability of the simulated annealing op-
timizer and the sensibility of the performance with respect to the dimensions of the configuration space that we
consider for the optimization.

Methodology

In order to do this we perform a single optimization cycle of the Qboost algorithm 3.1, varying the regularization
parameter λ, for QUBOmatrices of different sizes. For eachQUBOmatrix size the best performing ensemble out
of the ones obtained varying λ is chosen.

We compare the results with the ones obtained through the greedy algorithm performed over the predictions,
asking for an ensemble with maximum size equal to the size of the QUBOmatrix we optimize.

For low dimensional configuration space we produce also the brute force solution of the QUBO problem in
order to test whether theQboost optimization cycle is able to produce the same solution and if it is the one chosen
by the algorithm. Moreover, we report the brute force solution of the combinatorial problem for low dimensional
configuration spaces obtained for a null value of the regularization parameter. This is done in order to have a catch
of what would be the solution without constraining the numerosity of the ensemble.

Expectations

We expect that the scores with which we measure the performance of the ensemble can only increase in the case
of the greedy algorithm, while for the QUBO optimization procedure it can also decrease because the objective
functionwe are trying tominimize does not focus directly on thesemetrics, that regards the rankings buildedwith
the predictions of our ensembles, instead it focus on the accuracy of the ensemble in the multi-label classification
problem that the ensemble directly solves.
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5
Results

In this chapter, we present the outcomes of the investigative work carried out during this study, specifically focus-
ing on the experiments elaborated in Chapter 4.

5.1 Multilabel Qboost implementation
In this section we report the results obtained from the experiment described in section 4.3. In particular, we will
show the results obtained running our multi-label Qboost implementation over theMNIST dataset and over the
Axyon data. In this last case, benchmarking is conducted in two ways: against the greedy algorithm described in
Section 2.3 during the ensemble-building process, and also among the resulting ensembles themselves.

5.1.1 Toy dataset - MNIST
we report the results of a Qboost run with the following parameters:

• Each learner is trained over 10 epochs with a batch size of 4000 samples.

• hi(x): the pool of weak learner fromwhich we sample the one to be optimize at each repeat cycle is made
of 150 learners.

• hq(x): the number of learners considered at each optimization cycle is 50.

• T: The desired final ensemble size is of 20 learners.

• λ: We consider three values of the regularization parameter at each repeat cycle, [2100,2300,2500].

• The annealing parameters are 1000 reads and 2000 sweeps with a geometric β schedule.
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Figure 5.1: Up: final distribution of weights over the first 200 training samples, we can see which errors have been cor‐
rected during the Qboost optimization. Down: Evaluation accuracy value for the 5 cycles that this Qboost run lasted.

32



Figure 5.2: Up: Best result obtained during the fisrt optimization run with λ = 2500; down: Best result obtained during
the last optimization run with λ = 2100

Here, our findings largely align with what we anticipated in Section 4.3. Figures 5.1 and 5.2 illustrate that
the Qboost procedure incrementally strengthens the ensemble until it reaches the desired final size. Furthermore,
Figure 5.2 shows a notable improvement in the ensemble’s classification accuracy. Initially, the performance is
comparable to the average of individual weak learners, but eventually, it surpasses them by more than three per-
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centage points. These results not only confirm the effectiveness of the Qboost algorithm but also reassure us
about the accuracy of matrix element computations and the integrity of the overall code implementation.

5.1.2 C10 dataset
For what concerns the ensemble constructionwithin the C10 data-set several things can be noted from the results
reported in this section. In particular from Figure 5.3 it can be appreciated the difference between the two im-
plementations of the Greedy algorithm. The first one that focus in optimizing metrics, that is obtained through
a process of optimization and evaluation over the same data-set obtains a significantly higher score if compared
bothwith theGreedy algorithm over the predictions. This is expected andwe think that it is due for themost part
to overfitting. Moreover, we can clearly see that the ”weak boosting” procedure seems to be completely ineffective
as we have performed the QBoost optimization building QUBOmatrices of dimension 50.

To rule out any implementation errors affecting the theoretical functionality of the boosting procedure, we
conductedQboost optimization with aminimal number of weak learners. his was done to increase the likelihood
of observing variations in subsequent optimization steps. Minor fluctuations were observed in the initial stages,
but the algorithm eventually converged.

This is reassuring about the correctness of the implementation, however it could imply a low level of hetero-
geneity among the different learners, or the need to increase the initial pool from which we choose them, {hi}.

Figure 5.3: Up‐left: C10 ‐ ensemble optimization history obtained from Greedy alg. performed over aggregated metrics;
Up‐right: C10 ‐ ensemble optimization history obtained from Greedy alg. performed over the predictions; down: C10 ‐
ensemble optimization history obtained from multi‐label Qboost implementation
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Ensembles obtained from the different procedures posses similar sizes as shown in listings 5.1, 5.2 and 5.3.
The numerosity of these ensembles is approximately coherent with the ”law of diminishing returns in ensemble
construction” outlined in [24]. It states that in general the best number of learners for an ensemble is given by
the number of different labels of the classification problem we aim to solve. Interestingly, the two ensembles that
resulting from the greedy procedure from predictions and fromQboost shares a weak learner.

1 {
2 "Selected Learners": [
3 691968,
4 691981
5 ],
6 "maximize_metric": "mean",
7 "ensemble_metrics": {
8 "mean": 0.5724,
9 "sortino": 1.0937,
10 "sharpe": 0.5544
11 }
12 }

Listing 5.1: C10‐greedy metrics

1 {
2 "Selected Learners": [
3 691938,
4 692023
5 ],
6 "maximize_metric": "mean",
7 "ensemble_metrics": {
8 "mean": 0.1526,
9 "sortino": 0.5510,
10 "sharpe": 0.2817
11 }
12 }

Listing 5.2: C10 ‐ greedy predictions

1 {
2 "Selected Learners": [
3 691938,
4 691982,
5 692005
6 ],
7 "metrics": {
8 "mean": 0.1198,
9 "sortino": 0.3974,
10 "sharpe": 0.2106
11 }
12 }

Listing 5.3: C10 ‐ Qboost

Figure 5.4: Out‐of‐sample performances of the three ensembles built over C10 data‐set

Lastly, in 5.4 and 5.1 are reported the performance of the three ensembles in an OOS period. In the financial
context, even a slightly better-than-randomperformance is considered informative. Theperformances of the three
ensembles are fairly comparable, with the Greedy algorithm based on predictions performing best, followed by
Qboost and the Greedy algorithm using aggregated metrics. The consistent reduction in performance for the
latter suggests that overfitting is indeed a factor.
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QBOOST Greedy Pred Greedy Metrics
RIC mean 0.07195 0.07850 0.06662
RIC std 0.4830 0.4663 0.4895
RIC Down std 0.2569 0.2456 0.2591

Table 5.1: C10 ‐ Summary of RIC metric in OOS period

5.1.3 FTSEMIB v1 data-set

For the FTSEMIB v1 dataset, ensembles were generated using only the Qboost and Greedy algorithms based
on predictions, foregoing the Greedy algorithm over metrics due to its tendency to overfit, as observed in the
C10 dataset. Qboost optimization has been conducted considering 50 out of 100 weak learners for the QUBO
optimization.

Figure 5.5 reveals that the optimization histories for bothmethods suggest comparable performance, although
the Greedy algorithm shows a slight advantage. It’s also worth noting that the ”weak boosting” procedure proves
ineffective here as well.

Figure 5.5: Left: FTSEMIB v1 ‐ ensemble optimization history obtained from Greedy alg. performed over the predictions;
Right: FTSEMIB v1 ‐ ensemble optimization history obtained from multi‐label Qboost implementation

In terms of size, the ensembles created with the FTSEMIB v1 data are larger than those derived from the C10
data. The numerosity of the ensembles varies significantly between the twomethods, as shown in Listings 5.4 and
5.5. Specifically, the Greedy algorithm based on predictions generates an ensemble comprising 6 weak learners,
while theQboost algorithm results in an ensemble of 15. Intriguingly, all 6 learners selected by theGreedymethod
are also included in the ensemble formed by our multi-label Qboost algorithm.
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1 {
2 "job_ids": [
3 694694,
4 694715,
5 694717,
6 694754,
7 694748,
8 694737
9 ],
10 "ensemble_metrics": {
11 "mean": 0.0791,
12 "sortino": 0.6058,
13 "sharpe": 0.3042
14 }
15 }

Listing 5.4: FTSEMIB v1 ‐ greedy predicitons

1 {
2 "Selected Agents": [
3 694666,694676,694680,
4 694684,694694,694695,
5 694710,694715,694717,
6 694730,694733,694735,
7 694737,694748,694754
8 ],
9 "metrics": {
10 "mean": 0.0555,
11 "sortino": 0.3998,
12 "sharpe": 0.2108
13 }
14 }

Listing 5.5: FTSEMIB v1 ‐ Qboost

Figure 5.6: Out‐of‐sample performances of the three ensembles built over FTSEMIB v1 data‐set

As was done with the C10 ensembles, we evaluated the FTSEMIB v1 ensembles during an OOS period. The
results are depicted in Figure 5.6 and summarized in Table 5.2. In absolute terms, both ensembles perform worse
than those generated with the C10 data. Nevertheless, the ensemble created via the Greedy algorithm shows
marginally better performance, albeit not significantly so. The behaviour of the two ensembles generated for this
dataset are similar both in terms of numerical performance and in terms of the behaviour in the OOS period
showed in Figure 5.6.
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QBOOST Greedy Pred
RIC mean -0.0192 -0.0088
RIC std 0.2885 0.2998
RIC Down std 0.1675 0.1831

Table 5.2: FTSEMIB v1 ‐ Summary of RIC metric in OOS period

FTSEMIB v2 data-set

The same procedures adopted for FTSEMIB v1 data-set have been applied to FTSEMIB v2, that covers a different
time interval and involves the performance of 500 weak learners. The Qboost optimization has been conducted
considering 200 agents per cycle.

Figure 5.7: Left: FTSEMIB v2 ‐ ensemble optimization history obtained from Greedy alg. performed over the predictions;
Right: FTSEMIB v2 ‐ ensemble optimization history obtained from multi‐label Qboost implementation

Figure 5.7 shows that the performance of Qboost and the greedy algorithm are comparable, although Qboost
has a slight edge. However, the composition of the ensembles diverges significantly from the results on FTSEMIB
v1. In this case, the greedy algorithm selects a considerably larger ensemble, comprising 15weak learners, as shown
in listing 5.6. On the other hand, Qboost converges to a lean ensemble of just three agents, as detailed in listing
5.7.
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1 {
2 "job_ids": [
3 695093,694863,694772,
4 694801,694995,694935,
5 695064,695141,694700,
6 694722,694899,694849,
7 695016,694766,694754
8 ],
9 "ensemble_metrics": {
10 "mean": 0.1317,
11 "sortino": 1.0203,
12 "sharpe": 0.4909
13 }
14 }

Listing 5.6: FTSEMIB v2 ‐ greedy predicitons

1 {
2 "Selected Agents": [
3 694730,
4 694935,
5 695005
6 ],
7 "metrics": {
8 "mean": 0.1391,
9 "sortino": 1.1532,
10 "sharpe": 0.5440
11 },
12 }

Listing 5.7: FTSEMIB v2 ‐ Qboost

For FTSEMIB v2, the out-of-sample (OOS) results align with those obtained for the v1 dataset. Overall, the
performance on the FTSEMIB datasets is not particularly strong. Nonetheless, our primary interest lies in the
comparative analysis of the two ensemble methods rather than in their absolute performance. In this regard,
Qboost slightly outperforms the greedy algorithm in OOS data, though the difference is not significant.

Figure 5.8: Out‐of‐sample performances of the three ensembles built over FTSEMIB v2 data‐set

Lastly, Figure 5.8 reveals more moments where the performance of the two ensembles diverges, compared to
what is observed in Figure 5.6 for the FTSEMIB v1 dataset.

As evidenced by Tables 5.2 and 5.3, ensembles generated from the FTSEMIB dataset generally exhibit subop-
timal performance during the out-of-sample (OOS) period. While our primary focus is on the comparative per-
formance between the two ensemble methods, it’s important to contextualize these findings within the broader
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QBOOST Greedy Pred
RIC mean -0.01016 -0.01584
RIC std 0.2194 0.2640
RIC Down std 0.1318 0.1542

Table 5.3: FTSEMIB v2 ‐ Summary of RIC metric in OOS period

landscape of financial modeling. In this domain, even a marginal advantage over random predictions can be con-
sidered a success. The poor performance in the OOS period may be attributed to ’concept drift’ in the market
dynamics. Specifically, the relationships and features that the models have identified and optimized for during
the training phase may no longer hold true or be as influential in the OOS period, leading to the observed decline
in predictive accuracy.

5.2 QUBO optimization with a fixed size QUBO ma-
trix

Here we present the results of the experiment outlined in 4.4. The experiment is conducted only over the Axyon
data-sets. In particular we exploit all the available weak learners for the C10 data-set and for the FTSEMIB(v1)
dataset which both are obtained from 100 learners. Instead we exploit 200 of the 500 learners present in FT-
SEMIB(v2) due to computational time constraints.

C10 data-set
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Figure 5.9: C10 data‐set ‐ Left: Qboost inner cycle vs greedy, optimized over cv data and evaluated over test data; Right:
Qboost inner cycle vs greedy algorithm, optimized and tested over test data.
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FTSEMIB v1 data-set
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Figure 5.10: FTSEMIB v1 data‐set ‐ Left: Qboost inner cycle vs greedy , optimized over cv data and evaluated over test
data; Right: Qboost inner cycle vs greedy algorithm, optimized and tested over test data.

FTSEMIB v2 data-set
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Figure 5.11: FTSEMIB v2 data‐set ‐ Left: Qboost inner cycle vs greedy , optimized over cv data and evaluated over test
data; Right: Qboost inner cycle vs greedy algorithm, optimized and tested over test data.

Figures 5.9, 5.10 and 5.11 presents the average RIC metrics obtained from ensembles with different numerosity.
As specified in section 4.4 the different ensembles built through QUBO optimization are obtained varying the
regularization parameter λ. Instead, the results from the greedy procedure are obtained specifying the desired
ensemble size as an hyper-parameter in the algorithm initialization.

From all the experiment we can see that when the ensembles are builded with ’cv’ data and evaluated over a
different chunk of data exploited as ’test’ data, the results obtained fromQUBOoptimizations clearly outperform
greedy in two out of three analyzed cases. However, the situation change when the ensembles are builded and
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evaluated over the same data. In this case the performance of the greedy algorithm are consistently better than the
one fromQUBOoptimizations. This lastmethodology does not represent the standard described by theorywhen
it comes to building and evaluating models in the ML framework. In fact it is exceedingly prone to overfitting,
however it is the standard followed in Axyon and therefore it has been reported.

It must be highlighted the fact that while QUBO optimizations are based on the accuracy value of the ensem-
ble about the multi-label classification problem, the greedy algorithm although in its implementation over the
predictions does not take into account metrics from aggregated periods of time in the dataset, it is still optimized
through the evaluation of these metrics from each data sample. This is the reason why the optimizations curve
does not need to start from the same values both for QUBO and greedy optimization procedures: the best weak
learner in terms of accuracy is not guaranteed to be the best one also in term of RIC.

On the contrary, the optimization courves must converge to the sam e value for C10 and FTSEMIB v1 data-
sets. In fact in this case we arrive to consider all the weak learners available, and the performancemust be the same.
This does not happen for FTSEMIB v2 since we only take into account 200 out of 500 agents.

Finally it can be noted that for all three data-sets taken into account the SA solver does not produce different
solutions with the same numerosity.

InAppendix.B are reported the same plots with sortino and shapemetrics as well as the parameters withwhich
these results has been obtained.

5.3 QUBOoptimizationwithavariablesizeQUBOma-
trix

The following results are based on the experiments detailed in section 4.5. The elements plotted are derived as
follows:

• QUBO: The orange line on the plots shows the best outcomes from a complete Qboost inner cycle, span-
ningQUBOmatrix dimensions between 2 and 100. Each data point represents the optimal result for that
specific dimension.

• Greedy: Represented by the blue line, this algorithm iterates over predictions. Each point corresponds
to the optimal result from a greedy optimization cycle, where the maximum ensemble size is equal to the
current QUBOmatrix dimension.

• Brute Force with Regularization: The dashed green line indicates results obtained through brute-force
optimization of matrices built with a regularization parameter λ equal to the one that produced the best
result during SA optimization.

• Brute Force without Regularization: The red line presents the outcomes of brute-force optimization
without regularization, providing insight into the impact of regularization on performance.
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C10 data-set
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Figure 5.12: C10 data‐set ‐ Left: Qboost inner cycle vs greedy ‐ QUBO matrices of variable size ‐ optimized over cv data
and evaluated over test data; Right: Qboost inner cycle vs greedy algorithm ‐ QUBO matrices of variable size ‐ optimized
and evaluated over test data.

FTSEMIB v1 data-set
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Figure 5.13: FTSEMIB v1 data‐set ‐ Left: Qboost inner cycle vs greedy ‐ QUBO matrices of variable size ‐ optimized over
cv data and evaluated over test data; Right:Qboost inner cycle vs greedy ‐ QUBO matrices of variable size ‐ optimized and
tested over test data.

As anticipated, theGreedy algorithm shows a consistent, monotonic increase in performance across both theC10
and FTSEMIB v1 datasets. Conversely, fluctuations are noted in the performance of the Simulated Annealing
(SA) algorithm, which is expected given that we are not directly targeting the metric plotted and there is no strict
proportionality between RIC and multi-label classification accuracy of the ensemble.

Both Figures 5.12 and 5.13 align with results discussed in section 5.2. The highest value in the plots from
that section should correspond to the 100th data point in this section’s plots, provided the regularization param-
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eter schedule is sufficiently dense. Unlike the manual estimation of λ in section 5.2, this experiment required an
automated approach for defining it. Specifically, we searched for two λ values that produced ensembles with a
minimum of 2 members and a maximum equal to the size of the QUBOmatrix.

The
Lastly, additional plots concerning the RIC Sortino ratio and RIC Sharpe ratio can be found in Appendix B.
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6
Conclusions and future prospects

This thesis consists in a study of the Quadratic Unconstrained Binary Optimization Problem environment both
from a theoretical and from a practical point of view, with particular attention in the declination of QUBO as a
resource useful to describe the problem of building an ensemble of Machine Learning models.

It serves as a starting point in the attempt to improve the ensemble building step inside Axyon ML pipeline.
The approach adopted in this work is completely different from the one exploited at Axyon as it approaches the
construction of the ensemble as a pure combinatorial problem.

In fact, the aimwas to introduce a procedure able to explore the space of possible configurations of weak learn-
ers in a more extended and more efficient way than that of the greedy algorithm with which we confronted.

However, from the experimental results it is still unclear if the adoption of such an approach could provide
substantial and consistent benefits. Further research are needed to establish this with certainty. In particular,
several observations from the study point toward promising directions for future research.

A critical observation is that diversity among weak learners is not sufficient or, if sufficient, not adequately
exploited. One solution could be to devise a QUBO that involves terms that quantify diversity and reward it
accordingly [8].

An aspect that surely should be taken into account is the computational complexity of the QUBO we have
defined, with this respect a study about methods that helps to reduce the number of variable needed to define our
QUBO (shrinkage) could be beneficial [25].

Moreover, future trials that involves QUBO problems that takes into account directly the rankings produced
with the learners predictions remains interesting, besides the attempt that has been made with the Covariance
formulation. In fact, some works that involves financial metrics in QUBO definition have been already published
[26].

Finally, the implementation created during this work of thesis will be adapted to produce QUBO represen-
tations that can be solved through Quantum or Quantum-hybrid solvers through the algorithm reported in the
introductory section of this work.
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B
Results visualization

B.1 Fixed size QUBOmatrix - variable λ

0 20 40 60 80 100
N

0.125

0.150

0.175

0.200

0.225

0.250

0.275

RI
C-

sh
ar

pe

QUBO vs Greedy as a function of N - sharpe
Greedy
QUBO

0 20 40 60 80 100
N

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

RI
C-

so
rti

no

QUBO vs Greedy as a function of N - sortino
Greedy
QUBO

0 20 40 60 80 100
N

0.175

0.200

0.225

0.250

0.275

0.300

0.325

RI
C 

- s
ha

rp
e

Qboost vs Greedy as a function of N - sharpe
Greedy
QUBO

0 20 40 60 80 100
N

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

RI
C 

- s
or

tin
o

Qboost vs Greedy as a function of N - sortino
Greedy
QUBO

Figure B.1: C10 data‐set ‐ Experiment outlined in Sec. 4.4 sharpe and sortino ratios

51



0 20 40 60 80 100
N

0.00

0.05

0.10

0.15

0.20

0.25

0.30

RI
C-

sh
ar

pe

QUBO vs Greedy as a function of N - sharpe
Greedy
QUBO

0 20 40 60 80 100
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

RI
C-

so
rti

no

QUBO vs Greedy as a function of N - sortino
Greedy
QUBO

0 20 40 60 80 100
N

0.00

0.05

0.10

0.15

0.20

0.25

0.30

RI
C 

- s
ha

rp
e

Qboost vs Greedy as a function of N - sharpe
Greedy
Qboost

0 20 40 60 80 100
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

RI
C 

- s
or

tin
o

Qboost vs Greedy as a function of N - sortino
Greedy
Qboost

Figure B.2: FTSEMIB v1 data‐set ‐ Experiment outlined in Sec. 4.4 sharpe and sortino ratios
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Figure B.3: FTSEMIB v2 data‐set ‐ Experiment outlined in Sec. 4.4 sharpe and sortino ratios
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B.2 Variable size QUBOmatrix - variable λ
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Figure B.4: C10 data‐set‐ Experiment outlined in Sec. 4.5 sharpe and sortino ratios
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Figure B.5: FTSEMIB v1 data‐set ‐ Experiment outlined in Sec. 4.5 sharpe and sortino ratios
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