
Alma Mater Studiorum - Università di Bologna

Department of Economics

Second-cycle/Master’s Degree

in

ECONOMICS

Multivariate Autoregressive Denoising Di↵usion
Model for Value-at-Risk Evaluation

Presented by:

Edoardo Berti

0000923856

Supervisor:

Prof. Sergio Pastorello

Graduation session of December

Academic year 2020/2021

To Silvia and Carla

Multivariate Autoregressive Denoising Di↵usion Model for

Value-at-Risk Evaluation

Abstract

Neural time series methods are spreading in the financial sector due to their flexibility and

are quickly becoming viable alternatives to classical approaches. In this work, we successfully

apply an Autoregressive Denoising Di↵usion Model, namely Timegrad, to the problem of

modeling stock returns and estimating the Value-at-Risk. The utility of this new method is

illustrated by VaR Backtesting and empirical analyses on a portfolio of eight equally weighted

real stock indices. The study findings show that multivariate autoregressive deep generative

models such as Timegrad are able to produce realistic multivariate simulations for portfolios

of multiple stocks, giving a reliable tool in the risk management departments that deserves

further exploration and analysis.

1

Contents

1 Introduction 5

1.1 Motivation and Contributions . 5

1.2 Acknowledgements . 6

2 Value at Risk 7

2.1 Introduction to Value at Risk . 7

2.2 VaR Forecasting . 8

2.2.1 Historical Simulation (HS) . 9

2.2.2 Exponential weighted moving average (EWMA) 9

2.2.3 Generalised autoregressive conditional heteroscedasticity (GARCH) 10

2.2.4 Multivariate GARCH (DCC-GARCH) . 11

2.2.5 BEKK . 12

2.3 Backtesting VaR . 13

2.3.1 Binomial Test . 13

2.3.2 Tra�c Light Test . 13

2.3.3 Kupiec’s Proportion of Failure (POF) Test 14

2.3.4 Christo↵ersen’s Interval Forecast (IF) Test 14

2.3.5 Haas’s Time Between Failures (TBFI) Test 15

3 Background 16

3.1 Deep Feedforward Networks . 16

3.2 Sequence Modeling: Recurrent Neural Networks . 17

3.3 Long Short Term Memory . 19

3.4 Stochastic Gradient Descent . 22

3.4.1 ADAM . 23

3.4.2 Stochastic gradient Langevin dynamics . 24

4 Denoising Di↵usion Probabilistic Models 26

4.1 Introduction . 26

4.2 Architecture . 27

5 Timegrad 30

5.1 Introduction . 30

5.2 The Model . 30

5.3 Training . 31

5.4 Inference . 32

2

6 Timegrad VaR 33

6.1 Architecture . 33

6.2 Dataset . 35

6.3 Preprocessing . 35

6.4 Hyperparameter Tuning . 37

6.5 Results . 37

6.5.1 Timegrad Predictions . 38

6.5.2 Backtest results . 39

7 Conclusion 48

7.1 Summary . 48

7.2 Further developments . 49

3

List of Figures

1 Value at Risk . 8

2 Feedforward Neural Network Structure . 17

3 Recurrent Neural Network Structure . 18

4 The Standard RNN Architecture . 20

5 The LSTM Architecture. 20

6 The forget gate. 21

7 The input gate. 21

8 The updated Cell state. 21

9 The output gate. 22

10 Di↵usion Model Example . 26

11 Di↵usion Model Representation . 27

12 Timegrad Schematic . 31

13 Network Architecture . 34

14 Index Cumulative Returns . 35

15 Heatmap of the correlation matrix . 36

16 Windows Slicing Process . 36

17 Preprocessed Time Series of Portfolio’s Indexes returns 42

18 TimeGrad Prediction Intervals over the rolling windows scenario 43

19 VaR estimates at 95% Confidence level for each index in our portfolio 44

20 VaR estimates at 99% Confidence level for each index in our portfolio 45

21 VaR estimates at 95% Confidence level for FTSE MIB 46

22 VaR estimates at 95% Confidence level for FTSE MIB 47

List of Tables

1 TimeGrad Metrics Evaluation . 38

2 GP-Copula Metrics Evaluation . 38

3 Backtesting Results for 95% VaR on FTSE MIB . 39

4 Summary of the final test results on FTSE MIB . 40

5 Backtesting Results for daily 95% VaR on FTSE MIB 40

6 Summary of the final test results on FTSE MIB . 41

4

1 Introduction

1.1 Motivation and Contributions

Today, artificial intelligence (AI) is a growing field with many practical applications and active

research topics. Machine Learning (ML) techniques are now actively applied to automate routine

labor, understand speech or images, make diagnoses in medicine and practical active research.

Recent advances in artificial neural networks and deep learning allow to use deep learning in

time-series forecasting, which provides the ability to process a large amount of data (e.g., a larger

portion of the temporal data). Time-series forecasting methods are designed to take cross-temporal

relations into account. Classical studies on time-series forecasting focus on linear prediction models

such as autoregressive (AR), moving average (MA) and auto-regressive integrated moving average

(ARIMA) models where a linear function of past observations is used to predict the future values

(Box et al. 2015). However, classical time series forecasting methods such as those in (Hyndman

Athanasopoulos, 2018) typically provide univariate point forecasts and are trained individually on

each time series in a data set which does not scale with millions of series. Deep learning based

time series models (Benidis et al., 2020) are popular alternatives due to their end-to-end training

of a global model, ease of incorporating exogenous covariates, and automatic feature extraction

abilities. The task of modeling uncertainties is of vital importance for downstream problems that

use these forecasts for (business) decision making. More often the individual time series for a

problem data set are statistically dependent on each other. Ideally, deep learning models need to

incorporate this inductive bias in the form of multivariate (Tsay, 2014) probabilistic methods to

provide accurate forecasts. In highly complex systems characterized by non-stationary time series

such as those found in financial markets, we want to apply deep generative models to understand

the data generating process of single and multiple time series in a better way.

Deep learning applications to the financial world are spreading tremendously in the last few years

(Montantes, 2020) due to their reliability in learning high dimensional data distributions. Never-

theless, modelling the full predictive distribution requires low-rank approximations or restrictive

assumptions to handle the untractable true data distribution due to the computational and flexibil-

ity cost it requires. Energy-based models (EBM) (Hinton, 2002; LeCun et al., 2006), on the other

hand, are much less restrictive in terms of functional form. They approximate the non-Gaussian

log-probability so that density estimation reduces to a non-linear regression problem. EBMs have

been shown to perform well in learning high dimensional data distributions at the cost of being

di�cult to train (Song Kingma, 2021).

In this work, we make use of an autoregressive EBM to solve the multivariate probabilistic

time series forecasting problem in financial time series via a model called TimeGrad. This project

work has been developed in collaboration with Axyon AI company, a Modena-based leading player

in deep learning for time series forecasting and AI asset management. The predicted multivariate

5

distribution obtained with Timegrad can be leveraged in the risk management framework. Market

risk is the risk of losses in positions arising from movements in market prices and one of the main

measure to deal with this kind of financial risk is Value-at-Risk. Today, VaR is still a crucial

element in risk management, as it has always been adopted by the Basel Committee on Banking

Supervision (BCBS) regulations. Moreover, an accurate and reliable estimate of the VaR is an

opportunity to hedge portfolios by the financial institutions. Some competitive generative models

for VaR evaluation can be found in (Zhu, 2020) with GAN or in (Xu, 2016) where a quantile

autoregression neural network (QARNN) model is proposed. In this work we try to model VaR

estimation in a multivariate case using Timegrad. The interest to look for a multivariate proba-

bilistic model is that stocks in a portfolio usually have some kind of correlation (see Section 6.2),

hence more information can be extracted from the data with respect to univariate models.

The main contributions of this report are the following:

• We train an autoregressive Denoising Di↵usion Model on (financial) multivariate time series,

the model is able to generate a conditional underlying distribution of future time steps and

from which we are able to compute VaR forecast. This VaR estimation is tested and it is

proved to be superior with respect to baseline methods and a competitive alternative against

GARCH models (both univariate and multivariate).

• To the best of our knowledge, this work is the first attempt to adapt Denoising di↵usion

models to risk management analysis. Further research should focus on optimizing the tuning

of hyperparameters and compare it with other Deep Learning models in the field.

1.2 Acknowledgements

This work was supported by the FF4EuroHPC: HPC Innovation for European SMEs, Project

Call 1. The FF4EuroHPC project has received funding from the European High-Performance

Computing Joint Undertaking (JU) under grant agreement No 951745.

6

2 Value at Risk

This work will focus on the Value at Risk methodology for hedging against market risk. In this

section, we will define the concept of VaR, its traditional estimation methods, the backtesting but

also its drawbacks. These classical methods will constitute the baseline against our Timegrad VaR

implementation.

2.1 Introduction to Value at Risk

The basic concept was summarized by Linsmeier and Pearson (1996):

It has indeed two important characteristics. The first is that it provides a consistent measure

of risk across di↵erent positions and risk factors. As an example, it enables us to measure the

risk associated with a fixed-income position in such a way that it is comparable with the risk

of an equity or derivative position. The second characteristics is that it considers correlations

between di↵erent risk factors. This is essential in Portfolio Theory as it provides a risk measure

that accounts for correlations among di↵erent types of assets.

A formal definition of Value at Risk is the following

Definition 2.1. Let X be a random variable representing the returns, over a specified period of

time (t), of an investment. Let ↵ be the significance level, the ↵% VaR at the time horizon t is

the 1 � ↵ quantile of the probability distribution function of X and its absolute value represents

the highest possible loss at the significance level ↵.

P{X  V aR↵
t } = 1� ↵

The VaR is illustrated in Figure 1, which shows a common probability density function (pdf)

of profit/loss over a chosen holding period1. To get the VaR, we must choose a confidence level

(cl). If this is 95%, then the VaR is given by the negative of the point on the x-axis that cuts o↵

the top 95% of the observations from the bottom 5% of the tail distribution. In (1 � ↵)100% of

the cases the return is larger (better) than V aR↵. Only in ↵ · 100% of the cases the return is lower

(worse) than V aR↵.

1
The figure is constructed on the assumption that P/L is normally distributed with mean 0 and standard

deviation 1 over a holding period of 1 day.

7

Figure 1: Value at Risk

Note: Return distributions may have equal quantiles but di↵erent expected losses.

VaR has gained considerable importance to the point of becoming the main measure in risk

management. Value at risk is also used by bank regulators to determine bank capital requirements

against market risk. Under the 1996 Amendment to the Basel II accords, institutions approved

the risk management banks’ departments to have their capital requirements determined by their

own VaR estimates for extreme losses coverage.

Although its conceptual semplicity and adaptability, VaR also has its drawbacks as a risk

measure. VaR methodology can su↵ers from model risk, that is to build a model based on wrong

or inappropriate assumptions on the data distribution. Moreover, the measure can discourage

portfolio diversification by construction as it fails to take into account the magnitude of losses in

excess of VaR.

2.2 VaR Forecasting

This thesis aims to obtain a competitive VaR estimation through the Autoregressive Denoising

Model named Timegrad. This can be achieved by comparing the deep generative model to the

most widely used classical alternatives such as the non-parametric method of Historical Simula-

8

tion (HS), the Exponential weighted moving average (EWMA) improved upon by modeling the

conditional volatility with Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

(and its multivariate counterpart) models that will be briefly introduced below in the subsequent

paragraphs.

2.2.1 Historical Simulation (HS)

Historical Simulation is a popular non-parametric method. It does not assume a particular dis-

tribution of the asset returns. Historical simulation forecasts risk by assuming that past profits

and losses can be used as the distribution of profits and losses for the next period of returns. In

particular, it considers the empirical distribution of the returns, over a specified time interval (from

t to k) of the investment whose VaR has to be measured and computes its ↵ quantile. The VaR

”today” is computed as the ↵ quantile of the last N returns prior to ”today.”

V aR↵
t,HS = p1�↵(rt�1, rt�2, ..., rt�k) (2.1)

The main advantage of this method regards its easy computation, as it can be inferred from the

fact that this is a non-parametric method and that assumes that returns are rt ⇠ i.i.d., i.e. it

considers rt|It�1 = rt (Conditional distribution of rt given the past information is the same of the

unconditional distribution of rt) .

The main draw drawback of this method is that it poorly represents reality as financial returns are

not i.i.d. (they are conditionally heteroskedastic), and as long as they are stationary, the empirical

quantile will be a consistent estimator of the unconditional population quantile (which is constant)

and not of the conditional population quantile (which instead varies with t). Moreover, if a con-

stant VaR is used, the exceptions, i.e. the occurencies of rt  V aR, will be concentrated in the

most turbolent (riskiest) periods and will cluster together (as volatility clusters general clusters of

exceptions). Therefore, exceptions will be autocorrelated, and thus, predictable.

2.2.2 Exponential weighted moving average (EWMA)

The exponential weighted moving average (EWMA) method assigns non-equal weights, in par-

ticular exponentially decreasing weights. The most recent returns have higher weights because

they influence today’s returns more heavily than returns further in the past. The formula for the

EWMA variance over an estimation window of size WE is

b�2
t =

1

c

WEX

i=1

�i�1r2t�i (2.2)

where c is a normalizing constant:

9

c =
WEX

i=1

�i�1 =
1� �WE

1� �
! 1

1� �
as WE !1 (2.3)

For convenience, we assume an infinitely large estimation window to approximate the variance:

b�2
t ⇡ (1� �)

r2t�1 +

1X

i=2

�i�1r2t�i

!
= (1� �)r2t�1 + �b�2

t�1 (2.4)

where the decaying factor � is usually set to 0.94 (Nieppola, 2009). We may also wish to make

forecasts of future volatility. We begin by leading Equation (2.4) by one period:

b�2
t+1 ⇡ (1� �)r2t + �b�2

t (2.5)

By taking expectations as of t, and noting that E (r2t) = �2
t , we get:

E
�
b�2
t+1

�
⇡ �b�2

t + (1� �)b�2
t = b�2

t (2.6)

so the one-period ahead forecast of our volatility is approximately equal to our current volatility

estimate, b�2
t . It is easy to show, by similar reasoning, that our k-period ahead volatility forecast

is the same:

E
�
b�2
t+k

�
= �2

t , k = 1, 2, 3, . . . (2.7)

The EWMA model therefore implies that our current volatility estimate also gives us our best

forecast of volatility any period in the future. However, this result with the volatility forecast is

not attractive as it ignores any recent movement in our returns.

2.2.3 Generalised autoregressive conditional heteroscedasticity (GARCH)

The common method used to model the volatility is the generalized autoregressive conditional

heteroskedasticity, or GARCH, model. The GARCH model, which Bollerslev (1986) and Taylor

(1986) proposed independently of each other, describes an approach to estimate volatility in fi-

nancial markets. In this model, the conditional variance is a linear function of the q lags of the

squared returns, and also p lags of the conditional variance are included:

�2
t|t�1 = ↵0 +

qX

j=1

↵j✏
2
t�j +

pX

j=1

�j�
2
t�j|t�j�1 (2.8)

where ↵ and � are positive parameters to be estimated. The most popular GARCH model is

the GARCH(1,1), given the small number of parameters which makes its application fairly easy.

When we use a GARCH process to model returns we can assume a constant mean of zero, this is a

reasonable assumption given the short time periods under consideration. However, if necessary we

can model the conditional mean with an Autoregressive model (AR). For the estimation of VaR we

10

use the conditional variance given by GARCH(1,1) model. For the underlined asset’s distribution

properties we use the normal distribution. For this method, Value at Risk is expressed as:

V aR↵
t,G = µ̂t + �̂t|t�1N

�1(1� ↵) (2.9)

where µ is the mean stock return, � is the standard deviation of returns, ↵ is the selected confidence

level and N�1 is the inverse PDF function of Gaussian distribution. �̂t|t�1 is the conditional

standard deviation given the information at t�1 and the initial value �̂2
1|0 is set to the unconditional

variance �2 = ↵0
1�↵1��1

.

2.2.4 Multivariate GARCH (DCC-GARCH)

Since a portfolio, a collection of financial investments, consists of multiple assets, understanding

their volatility and co-volatility are of major interest to compute a more precise VaR estimation

of the portfolio.

Multivariate GARCH (MGARCH) can help remedy these issues, one among the main multivariate

models is the Dynamic Conditional Correlation (DCC) GARCH model by Engle and Shepard

(Engle, R., 2002). Let define a DCC-GARCH model.

Let Xt a vector (n⇥ 1) of stationary process, Xt ⇠ DCC �GARCH if:

Xt = µt + ✏t

✏t = ⌃1/2
t ✏t

⌃t = DtRtDt

(2.10)

with

Dt = diag(⌃1,t, ...,⌃n,t)

The matrix ⌃t is a covariance matrix then it is easy to see that Rt is the corresponding correlation

matrix and Dt contains the standard deviations of the components on the diagonal, which satisfy

the univariate GARCH equations:

⌃i,t = ↵0i +
QiX

q=1

↵iq✏
2
i,t�q +

PiX

p=1

+�ip⌃i,t�p (2.11)

where:

µt: Vector(n⇥ 1) of conditional expectation of Xt at t,

✏t: Vector (n⇥ 1) conditionals errors of n actifs at t,with E(✏t) = 0 and Cov(✏t) = ⌃t,

⌃t: is the matrix (n⇥ n) of conditional variances and covariances of ✏t at t,

Dt: diagonal matrix (n⇥ n) of conditional standard errors of ✏t at t,which is always positive,

Rt: Matrix (n⇥ n) of conditional correlations of ✏t at t,

✏t: Vector (n⇥ 1) of errors i.i.d. with E(✏t) = 0 and E(✏t✏
0
t) = In.

11

The conditional correlation matrix Rt can be break in:

Rt = diag(Qt)
�1/2Qtdiag(Qt)

�1/2

For a DCC(p,q), the proxy variable Q is in turn estimated by:

Qt = [1�
PX

i=1

↵DCC,i �
X

j=1

Q�DCC,j]Q+
PX

i=1

↵DCC,i(✏t�i✏
0

t�i) +
QX

j=1

�DCC,jQt�j (2.12)

For a DCC(1,1)

Qt = (1� ↵DCC � �DCC)Q+ ↵DCC✏t�1✏
0

t�1 + �DCCQt�1

where ↵DCC and �DCC are non negative scalars and Q is the unconditional matrix of the errors ✏t.

In our report we will consider the multivariate normal distribution for the residual, ✏ ⇠ N(0, Id).

The DCC-GARCH model can be estimated with a two-step procedure. First we estimate a univari-

ate GARCH model for each set of residuals. Then, the residuals, transformed from their previously

estimated standard deviation, are used to estimate the parameters of conditional correlation. Sim-

ilarly to the GARCH method, we can model the conditional mean with a Vector Autoregressive

Moving Average (VARMA) model if necessary.

The VaR of the portfolio is then given by :

V aRt,DCC = µ̂t + w
0
⌃twN

�1(1� ↵) (2.13)

if the strict white noise process is a multivariate standard normal.

2.2.5 BEKK

Another standard multivariate GARCH model is the BEKK model, named after its authors, Baba,

Engle, Kraft and Kroner. This model takes the following matrix form:

⌃t = ATA+BTxT
t�1xt�1B+CT⌃t�1C (2.14)

where there are n di↵erent returns, ⌃t is the n(n + 1)/2 matrix of (distinct) conditional vari-

ance and covariance terms at t, xt is the 1×n vector of returns, and A, B and C are nn ma-

trices. This model imposes no (questionable) cross-equation restrictions, and ensures that our

variance–covariance matrix will be positive definite.

However, the problem with this model is that it has a lot of parameters. For example, with

only two di↵erent factors (i.e., n = 2), the BEKK model involves 11 di↵erent parameters, and the

number of parameters rapidly rises as n gets larger. This model therefore requires far too many

parameters to be used for large-dimensional problems. Of course, we can reduce the number of

parameters by imposing restrictions on the parameters, but these only help us so much, and the

12

restrictions can create problems of their own.

2.3 Backtesting VaR

After estimating the VaR with a certain method, we need to assess the performance of VaR models.

This is the goal of Var backtesting, which can be measured in di↵erent ways. As a rule of thumb,

we test whether the percentage of the number of exceptions significantly di↵ers by the quantile

1�↵ and if the exceptions happen independently from one another. For these reasons we use more

than one criterion to backtest the performance of VaR models, because all tests have strengths

and weaknesses.

2.3.1 Binomial Test

The most straightforward test is to compare the observed number of exceptions, x, to the expected

number of exceptions. From the properties of a binomial distribution, you can build a confidence

interval for the expected number of exceptions. Using exact probabilities from the binomial distri-

bution or a normal approximation, the bin function uses a normal approximation. By computing

the probability of observing x exceptions, you can compute the probability of wrongly rejecting a

good model when x exceptions occur. This is the p-value for the observed number of exceptions

x. For a given test confidence level, a straightforward accept-or-reject result in this case is to fail

the VaR model whenever x is outside the test confidence interval for the expected number of ex-

ceptions. “Outside the confidence interval” can mean too many exceptions, or too few exceptions.

Too few exceptions might be a sign that the VaR model is too conservative.

The test statistic is

Zbin =
x�Npp
Np(1� p)

(2.15)

where x is the number of failures, N is the number of observations, and p = 1 – VaR level. The

binomial test is approximately distributed as a standard normal distribution

2.3.2 Tra�c Light Test

A variation on the binomial test proposed by the Basel Committee is the tra�c light test or three

zones test. For a given number of exceptions x, you can compute the probability of observing up

to x exceptions. That is, any number of exceptions from 0 to x, or the cumulative probability up

to x. The probability is computed using a binomial distribution. The three zones are defined as

follows:

1. The “red” zone starts at the number of exceptions where this probability equals or exceeds

99.99%. It is unlikely that too many exceptions come from a correct VaR model.

2. The “yellow” zone covers the number of exceptions where the probability equals or exceeds

95% but is smaller than 99.99%. Even though there is a high number of violations, the

13

violation count is not exceedingly high.

3. Everything below the yellow zone is ”green.” If you have too few failures, they fall in the

green zone. Only too many failures lead to model rejections.

2.3.3 Kupiec’s Proportion of Failure (POF) Test

The unconditional coverage property formally says that the probability of realizing a loss in excess

of the reported VaR, V aR↵
t , must be precisely (1� ↵) ⇤ 100%:

P (It+1(↵) = 1) = 1� ↵

where

It+1 =

(
1 if xt,t+1  V aR↵

t ;

0 if xt,t+1 > V aR↵
t .

In case the exceptions occur more frequently than (1�↵)⇤100%, our VaR measure underestimates

the actual level of risk of the investment. Kupiec (1995) introduced a variation on the binomial test

called the proportion of failures (POF) test. The POF test works with the binomial distribution

approach. In addition, it uses a likelihood ratio to test whether the probability of exceptions is

synchronized with the probability p implied by the VaR confidence level. If the data suggests that

the probability of exceptions is di↵erent than p, the VaR model is rejected. The POF test statistic

is

LRPOF = �2 log

(1� p)N�xpx
�
1� x

N

�N�x � x
N

�x

!
(2.16)

where x is the number of failures, N the number of observations and p = 1–V aR level. This

statistic is asymptotically distributed as a �2 variable with one degree of freedom. The VaR model

fails the test if this likelihood ratio exceeds a critical value, if LRPOF � (�2)�1(p) where p is the

confidence level and (�2)�1(·) denotes the quantile function of the �2-distribution with one degree

of freedom.

2.3.4 Christo↵ersen’s Interval Forecast (IF) Test

Christo↵ersen (1998) proposed a test to measure whether the probability of observing an exception

on a particular day depends on whether an exception occurred. Unlike the unconditional probabil-

ity of observing an exception, Christo↵ersen’s test measures the dependency between consecutive

days only. The test statistic for independence in Christo↵ersen’s interval forecast (IF) approach is

given by

LRIF = �2 log
✓

(1� ⇡)N00+N10⇡N01+N11

(1� ⇡0)N00⇡N01
0 (1� ⇡1)N10⇡N11

1

◆
(2.17)

where

• N00 = Number of periods with no failures followed by a period with no failures.

14

• N10 = Number of periods with failures followed by a period with no failures.

• N01 = Number of periods with no failures followed by a period with failures.

• N11 = Number of periods with failures followed by a period with failures.

and

• ⇡ = N01/(N00+N01), it is the probability of having a failure on period t, given that no failure

occurred on period t� 1.

• ⇡1 = N11/(N10+N11), it is the probability of having a failure on period t, given that a failure

occurred on period t� 1.

• ⇡1 = (N01 +N11)/(N00 +N01 +N10 +N11), it is the probability of having a failure on period

t.

This statistic is asymptotically distributed as a (�2) with one degree of freedom, we reject the

model if LRIF � (�2)�1(p).

2.3.5 Haas’s Time Between Failures (TBFI) Test

Haas (2001) introduced the Time Between Failures test to incorporate the time information be-

tween all the exceptions in the sample, the number of periods between exceptions should be

independent and geometrically distributed with parameter 1� ↵ under the null hypothesis.

LRTBFI = �2
I(↵)X

i=1

log

0

B@
p(1� p)Ni�1

⇣
1
Ni

⌘⇣
1� 1

Ni

⌘Ni�1

1

CA (2.18)

In this statistic, p = 1 � ↵ and Ni is the number of days between failures i� 1 and i. This is

asymptotically distributed as a �2 variable with I(↵) degrees of freedom, where I(↵) is the number

of failures. We reject a model if LRTBFI � (�2
M)�1(p) the TBFI tests for both independence and

coverage.

15

3 Background

In this chapter, we will discuss and introduce the required knowledge of generative deep learning

and neural networks for the main topics of the thesis. Deep Feedforward Networks, Recurrent

Neural Networks (RNNs) architecture and LSTM are introduced in sections 3.1, 3.2 and 3.3 re-

spectively; what follows is an understanding of Stochastic Gradient Descent (SGD) with ADAM

and Langevin dynamics for algorithmic training. Ultimately, the Denoising Di↵usion Probabilistic

Models and the Autoregressive Denoising Model for Multivariate Probabilistic Time series Fore-

casting will be discussed later in Sections 4 and 5.

3.1 Deep Feedforward Networks

Deep feedforward networks, also called feedforward neural networks, are at the heart of deep learn-

ing models. The goal of a feedforward network is to approximate some function f ⇤. As an example

for a classifier, y = f ⇤(x) maps an input x to a category y. A feed-forward network defines a

mapping y = f(x;✓) and learns the value of the parameters ✓ that result in the best function

approximation.

These models are feed-forward because information pass through the function being evaluated

from x, through the intermediate computations used to define the function f , and it ends to

the output y. There are no feedback connections in which outputs of the model are fed back-

wards. When feedforward neural networks are extended to include feedback connections, they

are called recurrent neural networks and will be discussed in the next sub-session. The net-

work is typically represented by a chain structure of functions. For example a chain of the form

f(x) = f (3)
�
f (2)

�
f (1)(x)

��
is composed by three functions, where f (1) is the first layer, f (2) the

second, and so on. The total number of layers is called the length of the chain and represents the

depth of the model (that’s the origin for deep learning terminology). The ultimate layer is called

the output layer. The goal during training is to approximate f ⇤ with the learning algorithm that

optimally chooses how to adapt those hidden layers for the final output. Given that those layers

are typically vectors, the dimensionality of them also determines the width of the model.

One way to start is to consider linear models because of their reliability in logistic and linear

regressions. In spite of that, they have their limitations: whenever the input variables are non-

linear, the model cannot understand the interaction between them. To extend linear models to

represent nonlinear functions of x, we can apply the linear model not to x itself but to a transformed

input �(x), where � is a nonlinear transformation. The strategy in deep learning training is to

learn �.

The model is defined by

y = f(x;✓,w) = �(x;✓)>w

16

Where ✓ are the parameters that we use to learn � from a broad class of functions, and w the

parameters that map from � to the desired output. This principle is what drives deep learning and

it applies, with several changes, to the models described in this thesis work. Feed-forward networks

have introduced the concept of a hidden layer, and this requires us to choose the activation functions

used to compute the hidden layer values and ensure non-linearity. The architecture of the network,

as illustrated in Figure 2, refers to the choice of the number of hidden layers, how these should be

connected to each other, and how many units should be included in each layer. Learning in deep

neural networks requires computing the gradients of such functions via back-propagation, that is

the calculation of the gradient of the loss function, proceeding backwards through the feed-forward

network from the last layer through to the first.

Figure 2: Feedforward Neural Network Structure

Stylized structure of a deep feedforward neural network. Each of the k layers consists of a variable number of fully

connected neurons (circles). The network has as many neurons in the input layer as input variables (n), and – for

classification – as many output neurons as there are classes in the data (m). A neuron is connected to all neurons

in the two adjacent layers via a weighted connection (w).

3.2 Sequence Modeling: Recurrent Neural Networks

Recurrent neural networks or RNNs (Rumelhart et al., 1986a) are a rich class of neural networks

for processing sequential data. A recurrent neural network is a neural network that is specialized

for processing a sequence of values x(1), . . . ,x(⌧). RNNs can be trained for generating sequences

by processing real data sequences one step at a time and predicting the next time steps. The new

sequences are generated by iteratively sampling from the trained network’s output distribution,

then feeding in the sample as input at the next step. This distribution is conditional, since the

internal state of the network, and hence its predictive distribution, depends on the previous inputs.

To do this, it is necessary to introduce a state that represents the entire previous historical series.

Each node of the network will have as input the value of the state in the previous time step and

17

the value of the input in that time step.

h(t) = f
�
h(t�1),x(t);✓

�
, (3.1)

were h is the state that indicate the hidden units of the network. When the recurrent network is

trained to perform a task that requires predicting the future from the past, the network typically

learns to use h(t) as a kind of lossy summary of the task-relevant aspects of the past sequence

of inputs up to t. After processing, it will compute the updated state value and the output

value for that time step. The dynamics of the recurrent neural network can be expressed by the

computational graph below in Figure 3, both in the compact and unrolled form:

Figure 3: Recurrent Neural Network Structure

The computational graph to compute the training loss of a recurrent network that maps an input sequence of x values

to a corresponding sequence of output o values. A loss L measures how far each o is from the corresponding training

target y. The loss L internally computes ŷ = softmax(o) and compares this to the target y. The RNN has input to

hidden connections parametrized by a weight matrix U , hidden-to-hidden recurrent connections parametrized by a

weight matrix W , and hidden-to-output connections parametrized by a weight matrix V . (Left)The RNN and its

loss drawn with recurrent connections. (Right)The same is seen as an time-unfolded computational graph, where

each node is now associated with one particular time instance.

Forward propagation begins with a specification of the initial state h(0). Then, for each time

step from t = 1 to t = ⌧ , we apply the following update equations:

18

a(t) = b+Wh(t�1) +Ux(t)

h(t) = tanh
�
a(t)

�

o(t) = c+ V h(t)

ŷ(t) = softmax
�
o(t)

�

(3.2)

This is an example of a recurrent network that maps an input sequence to an output sequence

of the same length. Similarly to feed-forward networks, RNNs are also trained using the back-

propagation algorithm. The gradient computation involves performing a forward propagation pass

moving left to right using the ”unrolled” version of the network, visible in the right part of the

figure 3, followed by a backward propagation pass moving right to left through the graph. The

algorithm, called back-propagation through time or BPTT, is very powerful but also expensive to

train. Although this method has a consolidated theory behind it, in practice it is unusable as it

su↵ers from the problem known in the literature as vanishing / exploding gradient problem[?]. The

basic problem is that gradients propagated over many stages tend to either vanish (most of the

time) or explode (rarely, but with much damage to the optimization). In particular, the di�culty

with long-term dependencies arises from the exponentially smaller weights given to long-term in-

teractions (involving the multiplication of many Jacobians) compared to short-term ones. It can

be easily seen that the function composition employed by recurrent neural networks somewhat

resembles that of matrix multiplication:

h(t) = W>h(t�1) (3.3)

where inputs x and a nonlinear activation function is omitted. Next, it can be recursively simplified

to

h(t) =
�
W t

�>
h(0), (3.4)

and if we apply a spectral decomposition to the matrix we get

W = Q⇤Q> (3.5)

so that h(t) becomes

h(t) = Q>⇤tQh(0). (3.6)

Finally, it can be seen that the eigenvalues that are raised to the power of t cause eigenvalues

with magnitude less than one to decay to zero and eigenvalues with magnitude greater than one

to explode.

3.3 Long Short Term Memory

As a solution to the vanishing/exploding gradient problem, Long Short Term Memory networks

have been proposed. Usually just called “LSTMs”, they are a special kind of RNN, capable of

19

learning long-term dependencies. They were introduced by Hochreiter & Schmidhuber (1997),

and were refined and popularized by many people in following work. They work extremely well

on a large variety of problems and are now widely used. LSTMs are explicitly designed to avoid

the long-term dependency problem therefore remembering information for long periods of time is

practically their default behavior. In order to better understand the LSTM architecture it is useful

to compare it with respect to the standard RNN analyzed above.

Figure 4: The Standard RNN Architecture

The repeating module in a standard RNN contains a single tanh layer.

LSTMs also have this chain-like structure, but the repeating module has a di↵erent structure.

Instead of having a single neural network layer, there are four interactive layers.

Figure 5: The LSTM Architecture.

The key to LSTMs is the cell state, the horizontal line running through the top of the diagram.

The LSTM has the ability to remove or add information to the cell state, carefully regulated by

structures called gates. Gates are a way to optionally let information through. The LSTM units

are conceptually similar to the nodes of the RNN as they in turn process the temporal data time

step by step by saving the information about the past in a memory or state cell, but they di↵er in

the use of an input gate, an output gate and a forget gate.

20

The first step is to decide what information will be preserved into the cell state or not. This

decision is made by the forget gate through a sigmoid: it looks at ht1 and xt and outputs a number

between 0 (discard it completely) and 1 (keep it completely) for each number in the cell state Ct�1.

Figure 6: The forget gate.

Next we decide what is the new information it is going to be stored in the cell state. First, a

sigmoid, namely the input gate decides what values get updated. Secondly, a tanh layer creates a

vector of new candidate values, C̃t, that could be added to the cell.

Figure 7: The input gate.

We now update the previous cell state, Ct�1, into the new cell state Ct. It gets done by

multiplying the previous state by ft and then adding it ⇤ C̃t.

Figure 8: The updated Cell state.

Ultimately, we need to decide what to output. This output will be based on our cell state, but

will be a filtered version. First, we run a sigmoid layer which decides what parts of the cell state

21

we’re going to output. Then, we put the cell state through tanh (to push the values to be in the

range [�1, 1]) and multiply it by the output of the sigmoid gate, so that we only output the parts

we have chosen.

Figure 9: The output gate.

The gated cells in the LSTM architecture increase the ability of the network to store information

regarding time steps for longer periods, but it also partially solves the vanishing/exploding gradient

problem(Hochreiter S., 1991). Empirically, LSTM networks and its variants have been shown to

handle long-term dependencies more easily than the simple recurrent architectures and are now

considered the state-of-the-art in terms of performance for long sequential series (Bengio et al.,

1994; Hochreiter and Schmidhuber, 1997; Hochreiter et al., 2001; Graves et al., 2013).

3.4 Stochastic Gradient Descent

Stochastic gradient descent or SGD is probably the most relevant algorithm in nearly all of the

deep learning models. It tries to solve a recurring problem in machine learning when dealing with

large training sets: they become increasingly computationally expensive. We recall the typical

cost function as the negative log-likelihood of the training data

J(✓) = Ex,y⇠p̂dataL(x, y,✓) =
1

m

mX

i=1

L
�
x(i), y(i),✓

�
(3.7)

where L is the loss per sample L(x, y,✓) = � log p(y | x;✓). For these cost functions, gradient
descent requires computing

r✓J(✓) =
1

m

mX

i=1

r✓L
�
x(i), y(i),✓

�
(3.8)

The computational cost of this operation is of order O(m), hence, as the data becomes increas-

ingly large, gradient descent becomes impractical as a method.

The idea behind SGD is to consider the gradient as an expectation of a small set of samples.

For each step of the algorithm a minibatch of samples B =
�
x(1), . . . ,x(m0)

is drawn uniformly

from the training set. The minibatch size remains fixed as the training size m grows. The estimate

of the gradient is now

22

g =
1

m0r✓

m0X

i=1

L
�
x(i), y(i),✓

�
(3.9)

The SGD algorithm follows the update rule

✓ ✓ � ✏g, (3.10)

where ✏ is the learning rate.

3.4.1 ADAM

Researchers had soon found out that the learning rate configuration had a significant impact on

the model performance and reliability, therefore a number of methods have been proposed to adapt

the learning rates on model parameters.

One popular method that will be used in this work is named Adam (Kingma and Ba, 2014)

which derives from adaptive moments estimation. It is a method for e�cient stochastic optimiza-

tion that only requires first-order gradients with little memory requirement. It computes individual

adaptive learning rates for di↵erent parameters from estimates of first and second moments of the

gradients. An exhaustive step-by-step procedure of the algorithm is reported below.

The Adam Algorithm

Require: Step size ✏ (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, ⇢1 and ⇢2 in [0, 1).

(Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant � used for numerical stabilization. (Suggested default:

10�8)

Require: Initial parameters ✓

Initialize 1st and 2nd moment variables s = 0, r = 0

Initialize time step t = 0

while stopping criterion not met do

Sample a minibatch of m examples from the training set
�
x(1), . . . ,x(m)

with

corresponding targets y(i).

Compute gradient: g 1
mr✓

P
i L

�
f
�
x(i);✓

�
,y(i)

�

t t+ 1

Update biased first moment estimate: s ⇢1s+ (1� ⇢1) g

Update biased second moment estimate: r ⇢2r + (1� ⇢2) g � g

Correct bias in first moment: ŝ s
1�⇢t1

r

Correct bias in second moment: r̂ 1�⇢t2
1�

Compute update: �✓ = �✏ ŝp
r̂+�

(operations applied element-wise)

Apply update: ✓ ✓ +�✓

end while

23

3.4.2 Stochastic gradient Langevin dynamics

Langevin dynamics is a concept taken directly from physics, where it was developed for statistically

modeling molecular systems (Welling & Tech, 2011). This method learns from large scale datasets

based on iterative learning from small mini-batches. By adding the right amount of noise to a

standard stochastic gradient optimization algorithm the iterates will converge to samples from the

true posterior distribution as we anneal the step size.

Let ✓ denote a parameter vector, with p(✓) a prior distribution and p(x|✓) the probability of

observation x given our model parameterized by ✓. The posterior distribution of a set of N data

collection X = {xi}Ni=1 is

p(✓ | X) = p(✓)
NY

i=1

p (xi | ✓) (3.11)

In the optimization literature the prior regularizes the parameters while the likelihood terms con-

stitute the cost function to be optimized, and the task is to find the maximum a posteriori (MAP)

parameters ✓⇤. In stochastic optimization methods ((Robbins Monro, 1951), at each iteration t,

a subset of n data items Xt = {xt1, . . . , xtn} is given, and the parameters are updated as follows:

�✓t =
✏t
2

r log p (✓t) +

N

n

nX

i=1

r log p (xti | ✓t)
!

(3.12)

where ✏t is a sequence of step sizes. The general idea is that the gradient computed on the

subset is used to approximate the true gradient over the whole dataset. Over multiple iterations

the whole dataset is used and the noise in the gradient caused by using subsets rather than the

whole dataset averages out. The problem regarding MAP estimation is that they do not capture

parameter uncertainty and might cause overfitting of the data. Langevin dynamics (Neal, 2010)

is thus introduced as a class of MC techniques that take gradient steps as well, but also injects

Gaussian noise into the parameter updates in the following way:

�✓t =
✏

2

r log p (✓t) +

NX

i=1

r log p (xi | ✓t)
!

+ ⌘t

⌘t ⇠ N(0, ✏)

(3.13)

As all MCmethods however they require computations over the whole dataset at every iteration,

which is proibitively large for massive datasets. Stochastic Gradient Langevin Dynamics combines

the two ideas of stochastic potimization and Langevin dynamics which results in an e�cient use

of large datasets while allowing for parameter uncertainty to be captured in a Bayesian manner.

The process is straightforward: add an amount of Gaussian noise to equation (3.12), balanced

with the step size in use and allow step sizes to approach zero:

�✓t =
✏t
2

r log p (✓t) +

N

n

nX

i=1

r log p (xti | ✓t)
!

+ ⌘t

⌘t ⇠ N (0, ✏t)

(3.14)

24

Letting the step sizes decrease towards zero2 allows to average out the stochasticity in the

gradients and, as t!1, ✓t will approach samples from the posterior distribution p(✓|X).

The introduced method has since been applied to model also deep learning algorithms, such as

the denoising di↵usion model we are going to use in this work, because for early iterations of the

algorithm, each parameter update mimics Stochastic Gradient Descent; however, as the algorithm

approaches a local minimum or maximum, the gradient shrinks to zero and the chain produces

samples surrounding the maximum a posteriori mode allowing for posterior inference.

2
To ensure convergence to a local minimum, in addition to other technical assumptions, a major requirement is

for the step sizes to satisfy the property
1X

t=1

✏t =1
1X

t=1

✏2t <1

25

4 Denoising Di↵usion Probabilistic Models

4.1 Introduction

The first setup for our empirical analysis is the introduction of a certain type of Energy-based model

(EBM) of (Ho et al., 2020) using di↵usion probabilistic models (Sohl-Dickstein 2015). A di↵usion

probabilistic model is a parameterized Markov chain trained by using variational inference in order

to produce samples matching the data after an arbitrary period of time. Steps of this chain are

learned by reversing a di↵usion process, which is basically a Markov chain that adds noise to

the data at each step forward until the original sampling distribution is destroyed. When the

added noise consists of Gaussian noise, the reverse process is simplified as the sampling consists of

conditional Gaussians too thus facilitating the network parameterization. A first glimpse of what

it means training a di↵usion model is given below at Figure 10, in this case for modeling a 2D

swiss roll data (Image source: Sohl-Dickstein et al., 2015).

Figure 10: Di↵usion Model Example

26

4.2 Architecture

Di↵usion models (Sohl-Dickstein, 2015) are latent variable models of the form p✓ (x0) :=
R
p✓
�
x0:N

�
dx1:N ,

where x1, . . . ,xN are latents of dimension RD, the same dimensionality of the data x0 ⇠ q (x0).

The joint distribution p✓
�
x0:N

�
is called the reverse process and is defined as a Markov chain with

learned Gaussian transitions starting at p
�
xN

�
= N

�
xN ;0, I

�
:

p✓
�
x0:N

�
:= p

�
xN

�
⇧1

n=Np✓
�
xn�1 | xn

�
, p✓

�
xn�1 | xn

�
:= N

�
xn�1;µ✓ (x

n, n) ,⌃✓ (x
n, n) I

�

(4.1)

where ✓ are the shared parameters; µ✓ : R ⇥ N! RD and ⌃✓ : RD ⇥ N! R+take two inputs,

namely the variable xn 2 RD as well as the noise index n 2 N.
The forward or di↵usion process as mentioned above, is a Markov chain that gradually adds

Gaussian noise to the data following a given increasing variance schedule �1, . . . , �n with �n 2 (0, 1):

q
�
x1:N | x0

�
= ⇧N

n=1q
�
xn | xn�1

�
, q

�
xn | xn�1

�
:= N

⇣
xn;

p
1� �nx

n�1, �nI
⌘

(4.2)

As shown by (Ho et al., 2020) the di↵usion (forward) process has the property that it can be

rewritten in closed form at any arbitrary noise level n:

q
�
xn | x0

�
= N

�
xn;
p
↵̄nx

0, (1� ↵̄n) I
�

(4.3)

where ↵n := 1� �n and ↵̄n := ⇧n
i=1↵i, its cumulative product.

Figure 11: Di↵usion Model Representation

The model developed in the work of Sohl-Dickstein

When it comes to training the model, the parameters ✓ are learned by minimizing the negative

log-likelihood via a variational bound using Jensen’s inequality:

min
✓

Eq(x0)

⇥
� log p✓

�
x0
�⇤
 min

✓
Eq(x0:N)

⇥
� log p✓

�
x0:N

�
+ log q

�
x1:N | x0

�⇤
, (4.4)

where the upper bound on the RHS can be rewritten as

L := min
✓

Eq(x0:N)

"
� log p

�
xN

�
�

NX

n=1

log
p✓ (xn�1 | xn)

q (xn | xn�1)

#
(4.5)

27

The Loss function is trained by SGD. In order to have a tractable objective function however,

we should first rewrite it in terms of distances between Gaussian distributions using the Kullback-

Leibler (KL)-divergence3:

L = Eq

"
� log p

�
xN

�
�

NX

n=1

log
p✓ (xn�1 | xn)

q (xn | xn�1)

#

= Eq

"
� log p

�
xN

�
�
X

n>1

log
p✓ (xn�1 | xn)

q (xn | xn�1)
� log

p✓ (x0 | x1)

q (x1 | x0)

#

= Eq

"
� log p

�
xN

�
�
X

n>1

log
p✓ (xn�1 | xn)

q (xn�1 | xn,x0)
· q (x

n�1 | x0)

q (xn | x0)
� log

p✓ (x0 | x1)

q (x1 | x0)

#

= Eq

"
� log

p
�
xN

�

q (xN | x0)
�
X

n>1

log
p✓ (xn�1 | xn)

q (xn�1 | xn,x0)
� log p✓

�
x0 | x1

�
#

= Eq[DKL

�
q
�
xN | x0

�
kp
�
xN

��
| {z }

LN

+
X

n>1

DKL

�
q
�
xn�1 | xn,x0

�
kp✓

�
xn�1 | xn

��
| {z }

Ln�1

� log p✓
�
x0 | x1

�
| {z }

L0

]

(4.6)

In (Ho et al.,2020) it is shown how this KL-divergence formulation makes it possible to directly

compare the two processes, as they become tractable when conditioned on x0:

q
�
xn�1 | xn,x0

�
= N

⇣
xn�1; µ̃n

�
xn,x0

�
, �̃nI

⌘
(4.7)

where

µ̃n

�
xn,x0

�
:=

p
↵̄n�1�n

1� ↵̄n
x0 +

p
↵n (1� ↵̄n�1)

1� ↵̄n
xn and �̃n :=

1� ↵̄n�1

1� ↵̄n
�n (4.8)

We now take a look at each component of the objective function in order to have an algorithm

both for training and sampling the generative process. First of all, by keeping the forward process

variances �n constants, the posterior q has no learnable parameters and we can ignore LN during

training since it remains constant as well. For our work we are interested in the middle term,

which can now be rewritten as

Ln�1 := DKL

�
q
�
xn�1 | xn,x0

�
kp✓

�
xn�1 | xn

��
= Eq


1

2�✓

��µ̃n

�
xn,x0

�
� µ✓ (x

n, n)
��2
�
+ C (4.9)

where C is a constant which does not depend on ✓. We have also set ⌃✓ (xt, t) = �2
t I to

untrained time dependent constants. We can take advantage of the closed form property of the

forward process in equation (4.3) by reparameterizing it as xn (x0, ✏) =
p
↵̄nx0 +

p
1� ↵̄n✏ for

✏ ⇠ N (0, I) and the formula in (4.8) to obtain:

3
Extended derivation from Sohl-Dickstein.

28

Ln�1 � C = Ex0,✏

"
1

2�2
n

����µ̃n

✓
xn

�
x0, ✏

�
,

1p
↵̄n

�
xn

�
x0, ✏

�
�
p
1� ↵̄n✏

�◆
� µ✓

�
xn

�
x0, ✏

�
, n
�����

2
#

= Ex0,✏

"
1

2�2
n

����
1
p
↵t

✓
xn

�
x0, ✏

�
� �n

p
1� ↵̄n

✏

◆
� µ✓

�
xn

�
x0, ✏

�
, n
�����

2
#

(4.10)

Equation (4.10) shows that µ✓ must predict 1p
↵t

⇣
xn � �n

p
1�↵̄n

✏
⌘
given xn. Since xn is an input

to the network, we can choose:

µ✓ (x
n, n) :=

1
p
↵n

✓
xn � �np

1� ↵̄n
✏✓ (x

n, n)

◆
(4.11)

so that the objective function in equation (4.19) simplifies to

Ex0,✏


�2
n

2�✓↵n (1� ↵̄n)

��✏� ✏✓
�p

↵̄nx
0 +
p
1� ↵̄n✏, n

���2
�

(4.12)

The applied reparameterization shows in Algorithm 1 how training is achieved via the MSE

loss between the predicted Gaussian noise ✏✓ and the true noise ✏ ⇠ N (0, I). Ultimately to sample

the reverse process xn�1 ⇠ p✓ (xn�1 | xn) it is su�cient to compute

xn�1 =
1
p
↵n

✓
xn � �np

1� ↵̄n
✏✓ (x

n, n)

◆
+
p
�✓z (4.13)

where z ⇠ N (0, I) for n = N, . . . , 2 and z = 0 when n = 1. The complete sampling procedure,

starting from xN until x0 as reported in Algorithm 2, resembles Langevin dynamics where we

sample from the most perturbed sample and progressively reduce the magnitude of the noise until

we reach the smallest one at x0.

Algorithm 1 Training

1: repeat

2 : x0 ⇠ q (x0)

3 : n ⇠ Uniform ({1, . . . , N})
4 : ✏ ⇠ N (0, I)

5 : Take gradient descent step on

r✓

��✏� ✏✓
�p

↵̄nx0 +
p
1� ↵̄n✏, n

���2

6 : until converged

Algorithm 2 Sampling

1: xN ⇠ N (0, I)

2: for n = N, . . . , 1 do

3: z ⇠ N (0, I) if n > 1, else z = 0

4: xn�1 = 1p
↵n

⇣
xn � 1�↵np

1�↵̄n
✏✓ (xn, n)

⌘
+ �nz

5: end for

6: return x0

29

5 Timegrad

5.1 Introduction

We are now ready to introduce Timegrad method to generate new examples of sampled data from

the distribution of the original dataset. In deep learning a straightforward time series model for

multivariate real-valued data could take the full multivariate vector xt and covariates as inputs to

the RNN and use a factorizing output distribution. For this purpose, a full joint distribution at

each time step has to be modeled, which happens to be a multivariate Gaussian most of the times

for practical purposes. However, this has not proved to be a viable solution as the full covariance

matrix of the multivariate Gaussian distribution exponentially increases both the number of pa-

rameters and the computational cost in training the loss function. Other works such that referred

as Vec-LSTM propose to approximate the Gaussian distribution with with diagonal or low-rank

covariance matrices and has proven to be e↵ective in popular datasets (Salinas et al., 2019a).

The method proposed i Timegrad(Rasul et al., 2021), learns the gradient of the data distribu-

tion by optimising the variational lower bound and then generates samples through the denoising

di↵usion model introduced in Section 4. Using a model architecture defined by LSTM, residual,

and dilated convolutional layers, the authors achieved SotA results across six popular time series

datasets and that motivated our interest in applying this method to financial time series for VaR

Estimation and backtesting.

5.2 The Model

We start by defining multivariate time series as x0
i,t 2 R for i 2 {1, . . . , D} where t is the time

index. We want to predict the multivariate distribution for some chosen prediction time steps

ahead so we will consider contiguous sequences sampled from the whole time series training set

which will be splitted into a context window sized interval [1, t0) and our chosen prediction length

sized interval [t0, T].

Time grad models the conditional distribution of the future time steps of a multivariate time

series given its past and covariates as:

qX
�
x0
t0:T | x0

1:t0�1, c1:T
�
= ⇧T

t=t0qX
�
x0
t | x0

1:t�1, c1:T
�

(5.1)

where X = RD is the input space and ct the covariates that are known for all the time points

and each factor resembles those learned by the conditional denoising di↵usion model introduced

above. The method employ the RNN architecture (Graves, 2013) with the LSTM algorithm to

encode the time series sequences up until t � 1, given the covariates of the next time step ct, by

the updated hidden state ht�1

ht�1 = RNN✓

�
concat

�
x0
t�1, ct

�
,ht�2

�
(5.2)

30

where RNN✓ is a multi-layer LSTM parameterized by shared weights ✓ and h0 = 0.

The conditional distribution in equation (5.1) is approximated by the TimeGrad model as

⇧T
t=t0p✓

�
x0
t | ht�1

�
(5.3)

where ✓ includes the weights of both the RNN and the denoising di↵usion model. The model

is autoregressive as it takes the observation of the previous time step to learn or to sample the

distribution of the next period as shown in Figure 12.

Figure 12: Timegrad Schematic

An RNN conditioned di↵usion probabilistic model at some time t� 1 showing the fixed forward process that adds

Gaussian noise to the signal and the learned reverse processes. The cross-correlation of the time series is also

depicted during the stages of the process, from pseudo-white noise (right) to the original distribution (left).

5.3 Training

Training algorithm is performed by random sampling the context and adjoining prediction length

sized windows from the training data and learning the parameters ✓ that minimize the loss function

of Timegrad in (5.3):

TX

t=t0

� log p✓
�
x0
t | ht�1

�
(5.4)

31

We can now recall the objective function (4.12) derived in Section 4 to express the objective

for training the Timegrad model in a similar way except that now the network is also conditioned

on the hidden state, that is

Ex0
t ,✏,n

h��✏� ✏✓
�p

↵̄nx
0
t +
p
1� ↵̄n✏,ht�1, n

���2
i

(5.5)

which discards the weighting for simplicity. In a similar way from Section 4 Algorithm 1 is the

training procedure for each step in the chosen prediction window using this objective.

Algorithm 1 Training for each time series step t 2 [t0, T]

Input: data x0
t ⇠ qX (x0

t) and state ht�1

repeat

Initialize n ⇠ Uniform (1, . . . , N) and ✏ ⇠ N (0, I)

Take gradient step on

r✓

��✏� ✏✓
�p

↵̄nx0
t +
p
1� ↵̄n✏,ht�1, n

���2

until converged

5.4 Inference

The next step is to make inference with our trained model. As usual for Deep Learning models, we

want to compare the model performance with the related time series test set. We run the RNN in

(5.2) over the training set until the hidden state hT is obtained. Recalling the sampling procedure

in Section 4 we obtain a sample x0
T+1 of the next period, which can subsequently be inserted

autoregressively into the RNN (and the covariates cT+2) to obtain the next hidden state hT+1 and

repeat until the forecast on our prediction length is completed. In order to get the compulsory

quantiles for our VaR Estimation and Backtesting it is necessary to repeat this process many times

(' 100).

Algorithm 2 Sampling x0
t via annealed Langevin dynamics

Input: noise xN
t ⇠ N (0, I) and state ht�1

for n = N to 1 do

if n > 1 then

z ⇠ N (0, I)

else

z = 0

end if

xn�1
t = 1p

↵n

⇣
xn
t � �np

1�↵̄n
✏✓ (xn

t ,ht�1, n)
⌘
+
p
�✓z

end for

Return: x0
t

32

6 Timegrad VaR

The performance of VaR Estimation of the classical parametric and non-parametric methods re-

viewed in section 2.2 depends on how much those assumptions fit the real data. We have already

mentioned the flaws of non-parametric methods such as HS in providing a good representation of

the exceptions of returns in 2.2.1. On the other side time-series econometrics models’ performance

strictly rely on the model construction as well as their assumptions. The deep learning approach

instead generates new samples from the data in order to learn the parameters of the underlying

conditional distribution. Our attempt is to adapt the Timegrad Model to Value-at-Risk Estima-

tion with a chosen portfolio of assets. We will first adapt our data to the train the model and then

we will proceed to VaR Estimation with it.

6.1 Architecture

We train Timegrad with SGD using Adam algorithm (Section 3.4.1) with a learning rate of 1⇥10�3

on the training split of the dataset with N = 100 di↵usion steps using a linear variance schedule

starting from �1 = 1 ⇥ 10�4 to �N . We adopt for batches the same size of the original paper

(Rasul et al., 2021) by taking random windows (with possible overlapping), with the context size

set to the number of prediction steps, from the total time steps of our dataset. As a preliminary

evaluation metric for the model we perform CRPSSUM using a rolling windows prediction starting

from the last context window history before the start of the prediction and compare it to the test

set by sampling S = 100 generated trajectories.

The RNN consists of 2 layers of an LSTM or GRU (Chung et al., 2014) with the hidden state

ht 2 R40 and we encode the noise index n 2 1, ..., N using the Transformer’s (Vaswani et al., 2017)

Fourier positional embeddings, with Nmax = 500, into ht 2 R32 vectors.

We heavily rely on Timegrad original paper in order to construct the network architecture of ✏✓,

which we recall is found in (5.5) to predict the noisy signal, consisting of conditional 1-dim dilated

ConvNets with residual connections adapted from the WaveNet (van den Oord et al., 2016a) and

Di↵Wave (Kong et al., 2020) models. Figure 13 shows the schematics of a single residual block

b = 0, ..., 7 together with the final output from the sum of all the 8 skip-connections. All, but

the last, convolutional network layers have an output channel size of 8 and we use a bidirectional

dilated convolution in each block b by setting its dilation to 2b%2.

We use a validation set from the training data of the same size as the test set to tune the number

of epochs for early stopping. The source code of the model has been developed with PyTorchTS4

(Rasul, 2021), a PyTorch Probabilistic Time Series forecasting framework which provides state of

4
https://github.com/zalandoresearch/pytorch-ts

33

the art PyTorch time series models by utilizing GluonTS5 as its back-end API and for loading,

transforming and back-testing time series data sets. The package is utilized in order to perform

probabilistic forecasts, while the VaR is calculated leveraging Timegrad’s output.

Axyon AI has access to CINECA HPC environment and all experiments have been performed

on MARCONI1006, an accelerated cluster based on IBM Power9 processors and NVIDIA Volta

GPUs (980 nodes) with

1. 2x16 cores IBM POWER9 AC922 at 3.1 GHz

2. 4 x NVIDIA Volta V100 GPUs, Nvlink 2.0, 16GB

3. 256 GB RAM

Figure 13: Network Architecture

The network architecture of ✏✓ consisting of residual-layers = 8 conditional residual blocks with the Gated Activation

Unit �(·) � tanh(·) from (van den Oord et al., 2016b); whose skip-connection outputs are summed up to compute

the final output. Conv1x1 and Conv1d are 1D convolutional layers with filter size of 1 and 3, respectively, circular

padding so that the spatial size remains D, and all but the last convolutional layer has output channels residual

channels = 8. FC are linear layers used to up/down-sample the input to the appropriate size for broadcasting.

5
https://github.com/awslabs/gluon-ts

6
At the time of writing MARCONI100 is the 18th largest cluster globally.

(Source:https://www.top500.org/system/179845/)

34

6.2 Dataset

The dataset we used for our experiments consists of daily close prices, ranging from 2000-01-01

to 2019-07-297, with the data being obtained from the Python package yfinance. In order to

take advantage of the multivariate setting we selected a majority of highly correlated indices. We

computed the cumulative returns of each stock indices by dividing the current closing price value

of the stock with the initial closing price value of the stock. We then plotted the returns with the

help of the Matplotlib package on Python and we got the chart below as the result. The returns

can also be calculated in a daily timeframe but the reason for choosing cumulative returns is that it

will be easier to notice correlations between stocks when plotted in a graph. For example, from the

chart, we could notice that a strong correlation exists between all eight8 of the stocks since it all

shows similar fluctuations or movements in its price. On contrary, it is impossible to observe such

movements in a daily returns plot since the lines will be overlapping one and another. The equally

weighted portfolio consists of the US SP500 Index (SP500), The Dow Jones Industrial Average

(DJIA), the NASDAQ Composite, the UK Financial Times Stock Exchange 100 Index (FTSE100),

the French CAC40, the italian FTSE MIB, the japanese NIKKEI 225 and the brazilian Bovespa.

Figure 14: Index Cumulative Returns

We are also representing a ‘heatmap’ function in Figure 15 provided by the Seaborn package

to make a heatmap plot out of the correlation matrix of the portfolio. It is easy to see that values

inside the plot are nothing but the correlation scores.

6.3 Preprocessing

Before feeding the model with our data, we need a preprocessing phase to transform our time series

into a manageable dataset for VaR Backtesting. All of the transformations are invertible allowing

a post-process phase where the results will be compared to their original time series data.

7
We do not include the data of the on-going COVID-19 pandemic crisis in order to avoid high volatily determined

by an exogenous shock in the market.
8
Bovespa Index is not included since its scale was significantly di↵erent from the others but it shows a very

similar path anyway.

35

Figure 15: Heatmap of the correlation matrix

1. Log return rt

rt = log

✓
st
st�1

◆
8t 2 1, . . . , T (6.1)

2. Scaling

In order to simplify the problem for the model we normalize scales of the training set. We

divide each time series entity by their context window mean (or 1 if it’s zero) before feeding

it into the model. During inference, the samples are then multiplied by the same mean values

to match the original scale. This results in significantly improved empirical performance of

the model as seen in (Salinas et. al, 2019b).

3. Rolling windows

We have also partioned the data with a rolling windows evaluation scenario. A sliding

window is placed on the preprocessed time series and all points within the window form a

sub-sequence. The sliding window is then moved on and on until the end of the dataset.

Such method,illustrated in Figure 16, is necessary for VaR Backtesting and it is referred as

Window Slicing (Le Guennec et. al., 2016).

Figure 16: Windows Slicing Process

36

6.4 Hyperparameter Tuning

In the context of neural networks, deep learning algorithms come with many hyperparameters that

control many aspects of the algorithm’s behavior. The performance of those algorithms strongly

relies on well those parameters to fit the data. Selecting hyperparameters, namely hyperparameter

tuning can be done with two di↵erent appproaches: choosing them manually or automatically. We

will stick with the first option as Automatic Hyperparameter Optimization Algorithms require their

own hyperparameters, such as the range of values that should be explored for each of the learning

algorithm’s hyperparameters. Moreover, given that we want to follow the original architecture

of Timegrad, we have chosen the default values as a starting point for our setting. The relevant

parameter that has to be changed from the original work was that of the context window length.

We tried three di↵erent window lengths: 5, 10 and 30 periods. The performance in the backtest

showed that with a too short context window length (5) the model is too sensitive to small changes

and with a longer window (30) it does not react fast enough. With 10 periods we have had the

best results.

Model hyperparameters:

• Batch size = 64. Number of samples present in a single training step.

• Epochs= 20.

• Number of batches per epoch= 100.

• Optimizer learning rate= 10�4.

• Context window length = 5. Number of days given as input to LSTM encoding block.

• Frequency= 1B. Pandas format to indicate the time series to consist of business days only

(Monday to Friday).

• Cell type= LSTM . The algorithm to encode the time series sequence.

• Di↵usion steps= 100

• Dataset Split = [0.7, 0.3]. Proportions into which the dataset is divided. In our case it implies

that 70% of the data is reserved for the training set, 30% for the test set.

6.5 Results

We will now show the results running the code and training the model for our equally weighted

portfolio of eight indices. First of all we will start with the predictions and predictions intervals

as reported in the original paper of (Rasul et al., 2021). We will then proceed to the core of this

thesis work: computing the predicted VaR for our rolling windows scenario and compare it with

our benchmark baseline models.

37

6.5.1 Timegrad Predictions

To highlight the predictions of Timegrad we show in Figure 18 the predicted median, 95% and

99% distribution intervals of all the 8 dimensions of the Portfolio’s Indexes returns. We set the

forecasting horizon to 30 periods to replicate the original paper prediction length of Exchange

dataset, which has a similar data structure. For evaluation, GluonTS provides a Multivariate

Evaluator object that iterates over true targets and forecasts in a streaming fashion, and calculates

metrics, such as normalized root-mean-squared error (NRMSE), weighted quantile loss and the

Continuous Ranked Probability Score (CRPS)9 (Matheson & Winkler, 1976) on each time series

dimension, as well as on the sum of all time series dimensions (the latter denoted by MetricsSUM).

The results are summarized in Table 1.

Table 1: TimeGrad Metrics Evaluation

Dimension CRPS ND NRMSE

Single (FTSE MIB) 0.7770502908 1.0183983714 1.3164482648

Global (Metricssum) 0.7787133470 1.0512513727 1.2362482353

We are also comparing TimeGrad Evaluation against another deep learning based methods with

the same metrics and forecasting horizon. The model, namely GP-Copula (Salinas et al.,2019a) is

another multivariate deep learning method which unrolls an LSTM on each individual time series

and then the joint emission distribution is given by a low-rank plus diagonal covariance Gaussian

copula. The results are summarized below in Table 2.

Table 2: GP-Copula Metrics Evaluation

Dimension CRPS ND NRMSE

Single (FTSE MIB) 0.7675156733 1.0001101909 1.3762850638

Global (Metricssum) 0.7207674164 0.9437672189 1.1652926851

The tables exhibit how despite in the original paper TimeGrad models sets the state-of-the-art

on all but the smallest of the benchmark datasets, it fails to replicate the performance when it

comes to a portfolio of stock indices. We will return on that in the subsequent paragraphs.

9
CRPS measures the compatibility of a cumulative distribution function (CDF) F with an obsservation x as

CRPS(F, x) =

Z

R
(F (z)� I{x  z})2 dz,

where I{x  z} is the indicator function which is one if x  z and zero otherwise. CRPS is a proper scoring

function, hence CRPS attains its minimum when the predictive distribution F and the data distribution are equal.

38

6.5.2 Backtest results

In this section, we provide the results of the model Value-at-Risk Backtesting. Our first results

are provided for each index at 95% VaR in Figure 19.

We have successfully integrated Value-at-risk evaluation by choosing the prediction length that

fitted the optimal number of exceptions. The model is characterized by a high level of stochasticity

as the same hyperparameters have generated di↵erent levels of Value-at-Risk estimation. We are

representing the average scenario for those simulations where we trained Timegrad with returns at

10 days (i.e. two weekly returns) as it was the most reliable in terms of exceptions. Unfortunately

the daily VaR Backtesting resulted in a poor performance in terms of exceptions albeit it is clearly

able to capture the high volatility of the stock returns as it is shown in Figure ??. The dark

grey line represents the real return time series while the red line is the 95% VaR estimate with

Timegrad. The model seems sensitive to the volatility of the time series, when the variability

increases the underlying distribution learned by the RNN component generates a higher volatility

and so the VaR estimates will be lowered. In the rolling windows, at the 95% significance level,

we take a look at exceptions for each time series obtained as discussed in section 2.3. We can also

estimate the VaR at 99% confidence level, which is a crucial element in risk management, following

the Basel Committee regulations. We can see the 99%VaR results of the model in Figure 20.

First, we proceed to compare our model forecast for daily 95%VaR with the baseline paramet-

ric model the non-parametric model Historical Simulation and the Exponential weighted moving

average (EWMA). We decide to compare the 10-days 95% VaR, instead of 99% confidence level

because with a lower level the hypothesis of our backtest are more reliable, as more exceptions

make more significant test statistics. We can easily focus our attention to just one index as the

empirical results provide consistent evidence for a global analysis. The backtesting results for

FTSE MIB are reported below in Table 510 and 6.

Table 3: Backtesting Results for 95% VaR on FTSE MIB

T imegrad HS250 EWMA

Number of exceptions 92 45 95

Test p� value5%

BIN 0.091051 0.00015207 0.041399

TL 0.95688 3.0478e� 05 0.97954

POF 0.10027 4.1825e� 05 0.048499

CCI 0.20262 1.555e� 06 0.12577

TBFI 0.0036578 7.7204e� 09 0.040914

10
The three zones for Tra�c Light Test are defined based on the cumulative probability of observing up to x

failures, hence, what is reported is this cumulative probability instead of the p-value.

39

Table 4: Summary of the final test results on FTSE MIB

T imegrad HS250 EWMA

Actual number of exceptions 92 45 95

Expected number of exceptions 78

Test Results

BIN fail to reject reject reject

TL yellow green yellow

POF fail to reject reject reject

CCI fail to reject reject fail to reject

TBFI reject reject reject

The multivariate Timegrad model seems to handle the risk quite well given that the actual

number of exceptions found by this model is slightly lower than the number that we get from

EWMA (92 vs 95). As expected, the historical simulation model performs the worse out of all the

models, this is due to their slowness to react to the change in volatility. The Exponential Weighted

Moving Average Method (EWMA) proves to have a better understanding of the volatility of the

returns, as Figure 21 points out, showing an improvement against the HS method. Table 6 clearly

shows the superior validity of Timegrad, albeit it fails to pass the Time Between Failures Test

which means that we have some clustering of the exceptions during our backtest.

Now we are going to compare Timegrad against the univariate GARCH(1,1) model and the

competitive deep learning model GP-Copula at 1-day VaR Backtesting.

Table 5: Backtesting Results for daily 95% VaR on FTSE MIB

T imegrad GARCH(1, 1) GPCopula

Number of exceptions 150 97 75

Test p� value5%

BIN 0 0.0174 0.84214

TL 1 0.99085 0.45094

POF 2.1714e� 14 0.02211 0.84159

CCI 0.081622 0.44059 0.48651

TBFI 3.826e� 06 0.019197 0.15301

40

Table 6: Summary of the final test results on FTSE MIB

T imegrad GARCH(1, 1) GPCopula

Actual number of exceptions 150 97 75

Expected number of exceptions 78

Test Results

BIN reject reject fail to reject

TL red yellow green

POF reject reject fail to reject

CCI fail to reject fail to reject fail to reject

TBFI reject reject fail to reject

With respect to the univariate GARCH(1,1) model, it is shown in Figure 22 that despite being

two comparable processes, GP Copula outperforms both Timegrad and the classic time series

econometrics method in the relevant tests for the reliability of the model in VaR Backtesting. This

should not be much a surprise since the univariate GARCH(1,1) does not take into account the

dependencies of the indexes and it relies only on the single process. The di↵erence between the

two deep learning model however is remarkable. Despite having a narrow margin with respect to

Timegrad in terms of CRPS metrics, it is undoubtedly the best overall model to perform this kind

of task.

41

Figure 17: Preprocessed Time Series of Portfolio’s Indexes returns

42

F
ig
u
re

1
8
:
T
im

eG
ra
d
P
re
d
ic
ti
on

In
te
rv
al
s
ov
er

th
e
ro
ll
in
g
w
in
d
ow

s
sc
en
ar
io

43

Figure 19: VaR estimates at 95% Confidence level for each index in our portfolio

44

Figure 20: VaR estimates at 99% Confidence level for each index in our portfolio

45

F
ig
u
re

2
1
:
V
aR

es
ti
m
at
es

at
95
%

C
on

fi
d
en
ce

le
ve
l
fo
r
F
T
S
E
M
IB

46

F
ig
u
re

2
2
:
V
aR

es
ti
m
at
es

at
95
%

C
on

fi
d
en
ce

le
ve
l
fo
r
F
T
S
E
M
IB

47

7 Conclusion

In this last section, we draw our conclusions on the work and the goals that have been achieved. In

the first subsection, we briefly summarize what were our motivations and intentions. What follows

is a set of ideas for further development of this work.

7.1 Summary

The research project main goal was to develop a new approach of generative models for risk

management, going beyond previous works at Axyon AI with GANs. This thesis shows that a

multivariate Denoising Di↵usion Model with an autoregressive component not only is applicable

to financial time series data, but it also proves to be a competitive alternative to the classic models.

Being a new and constantly evolving environment, the project’s first aim was to allocate a consis-

tent amount of time to the literature review. Then we decided to proceed with a model, Timegrad,

that exhibited state-of-the-art forecasting predictions against time series econometric models and

other Deep learning approaches (Rasul et al., 2021).

We started this report providing the basics on the Value at Risk theory as the most com-

mon measure for market risk and its conventional estimation with parametric and non-parametric

methods. We then presented the neural network background necessary to build Di↵usion prob-

abilistic models integrated with a RNN. In particular, our model is conditioned on past returns

(autoregressive component) and thus it can learn and generate the conditional distribution of the

time series.

We started developing Timegrad as a global model as its libraries in PyTorchTS and its code

were built under a multivariate environment (an attempt to the univariate case was made but it

led to poor results). We took advantage of the multivariate dimension by using highly correlated

assets to macroeconomic factors such as the most valuable stock indices. Except prediction length

and number of epochs, the hyper-parameters of GPVAR(GP Copula), Timegrad were the default

hyperparameters, described in their documentation11. We used 20 epochs for Timegrad and 50

epochs for GPVAR respectively. As pointed out in the previous section, the major problem encoun-

tered concerns the presence of exception clusters in the backtest. It is clear then that the model

is still far from being perfect by incorrectly generating the underlying distribution of the data.

Nevertheless, it proved to be a consistent competitor to classical methods (at least for the 10-days

estimator). Considering also the superb performance of alternative methods such as GP Copula we

may infer that further research on this field can improve the performances of Denoising models for

multivariate probabilistic time series forecasting and that sooner or later deep generative models

may overcome and substitute traditional ones for risk management.

11
https://github.com/awslabs/gluon-ts

48

7.2 Further developments

Our work shows that multivariate autoregressive denoising models are successfully able of dealing

with the probability distribution of financial time series, albeit with limitations, and we think that

the proposed model could have many possible opportunities for further research.

1. We may improve the forecast by adding manual features to the RNN architecture given that

this model takes covariates automatically through lag orders.

2. As previous works with Axyon AI pointed out (Davoli, 2021), generative models such as

GAN and Timegrad are challenging to train and time-consuming. Models such as Low-Rank

Gaussian Copula Processes (Salinas, 2019) provide more e�cient results with little cost in

terms of performance. There is a trade-o↵ that needs further development regarding the

criterion for model selection but the models from Salinas seems to perform better in this

field.

3. As a first attempt, the experiment is built with a small number of assets in order to replicate

the characteristics of one of the datasets in the original paper. Once verified that an imple-

mentation of these kinds of models is indeed possible we can think to expand the dimension

of the portfolio to a more complex version. Not only we could evaluate the VaR but also

the sign of the weight on each instrument (long/short position) should be considered. This

would allow the comparison with other classical multivariate methods such as DCC-GARCH

and BEKK presented in Section 2.2.4 and 2.2.5

Those are the main proposals that have emerged during several meetings held within the Axyon

ML team, which I personally thank for their punctual and steady support.

49

References

[1] Bengio, Y., Simard, P., Frasconi, P. (1994). Learning long-term dependencies with gradient

descent is di�cult. IEEE transactions on neural networks, 5(2), 157-166.

[2] Benidis, K., Rangapuram, S. S., Flunkert, V., Wang, B., Maddix, D., Turkmen, C., ...

Januschowski, T. (2020). Neural forecasting: Introduction and literature overview. arXiv

preprint arXiv:2004.10240.

[3] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of

econometrics, 31(3), 307-327.

[4] Box, George EP, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung.(2015) Time

Series Analysis: Forecasting and Control. John Wiley Sons.

[5] Chung, J., Gulcehre, C., Cho, K., Bengio, Y. (2014). Empirical evaluation of gated recurrent

neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

[6] Davoli, Giovanni (2021). VaR Estimation with conditional GANs and GCNs.

[7] Engle R. (2002). Dynamic Conditional Correlation: A Simple Class of Multivariate GARCH

Models. Journal of Business and Economic Statistics.

[8] Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning. MIT Press.

[9] Gouttes, A., Rasul, K., Koren, M., Stephan, J., Naghibi, T. (2021). Probabilistic Time Series

Forecasting with Implicit Quantile Networks. arXiv preprint arXiv:2107.03743.

[10] Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850.

[11] Haas, M. (2001). New Methods in Backtesting, Financial Engineering. Bonn: Research Center

Caesar.

[12] Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence.

Neural computation, 14(8), 1771-1800.

[13] Ho, J., Jain, A., Abbeel, P. (2020). Denoising di↵usion probabilistic models. arXiv preprint

arXiv:2006.11239.

[14] Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),

1735-1780.

[15] Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J. (2001). Gradient flow in recurrent

nets: the di�culty of learning long-term dependencies

50

[16] Hochreiter S. (1991). Untersuchungen Zu Dynamischen Neuronalen Netzen. In: Diploma,

Technische Universitat Munchen 91.1

[17] Kingma, D. P., Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

[18] Kong, Z., Ping, W., Huang, J., Zhao, K., Catanzaro, B. (2020). Di↵wave: A versatile di↵usion

model for audio synthesis. arXiv preprint arXiv:2009.09761.

[19] Kupiec, P. (1995). Techniques for verifying the accuracy of risk measurement models. The J.

of Derivatives, 3(2).

[20] Le Guennec A., Malinowski S., and Tavenard R. (2016). Data Augmentation for Time Series.

Classification using Convolutional Neural Networks.

[21] LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F. (2006). A tutorial on energy-

based learning. Predicting structured data, 1(0).

[22] Linsmeier, T. J., Pearson, N. D. (1996). Risk measurement: An introduction to value at risk

(No. 1629-2016-134959).

[23] Matheson, J. E., Winkler, R. L. (1976). Scoring rules for continuous probability distributions.

Management science, 22(10), 1087-1096.

[24] McAndrews, K. (2015). Evaluating the Accuracy of Value at Risk Approaches.

[25] Bollerslev T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of

Econometrics.

[26] Teräsvirta, T. (2009). An introduction to univariate GARCH Models. Handbook of Financial

Time Series, 17–42.

[27] McKinsey et al. (2012). Managing market risk: Today and tomorrow. Report of 2012

[28] Montantes. (2020). What You Need to Know About Deep Reinforcement Learning.

[29] Oord, A. V. D., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., ... Kavukcuoglu,

K. (2016). Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499.

[30] Rasul, K., Seward, C., Schuster, I., Vollgraf, R. (2021). Autoregressive Denoising

Di↵usion Models for Multivariate Probabilistic Time Series Forecasting. arXiv preprint

arXiv:2101.12072

[31] Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning representations by back-

propagating errors. nature, 323(6088), 533-536.

51

[32] Salinas, D., Bohlke-Schneider, M., Callot, L., Medico, R., Gasthaus, J. (2019). High-

dimensional multivariate forecasting with low-rank gaussian copula processes. arXiv preprint

arXiv:1910.03002.

[33] Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski, T. (2019b). DeepAR: Probabilistic

forecasting with autoregressive recurrent networks. International Journal of Forecasting. ISSN

0169-2070

[34] Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S. (2015, June). Deep unsuper-

vised learning using nonequilibrium thermodynamics. In International Conference on Machine

Learning (pp. 2256-2265). PMLR.

[35] Song, Y., Kingma, D. P. (2021). How to train your energy-based models. arXiv preprint

arXiv:2101.03288.

[36] Talagala, T.S., Hyndman, R.J., Athanasopoulos, G. (2018). Meta-learning how to forecast

time series. Monash Econometrics and Business Statistics Working Papers, 6, 18.

[37] Taylor, S., (1986). Modelling Financial Time Series. Wiley, New York.

[38] Teräsvirta, T. (2009). An introduction to univariate GARCH Models. Handbook of Financial

Time Series, 17–42

[39] Tsay, R. S. (2014). An introduction to analysis of financial data with R. John Wiley Sons.

[40] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... Polosukhin,

I. (2017). Attention is all you need. In Advances in neural information processing systems (pp.

5998-6008).

[41] Welling, K. N. (2011). Modeling the water consumption of Singapore using system dynamics

(Doctoral dissertation, Massachusetts Institute of Technology).

[42] Xu, Q., Liu, X., Jiang, C., Yu, K. (2016). Quantile autoregression neural network model with

applications to evaluating value at risk. Applied Soft Computing, 49, 1-12.

[43] Zhao, S., Liu, Z., Lin, J., Zhu, J. Y., Han, S. (2020). Di↵erentiable augmentation for data-

e�cient gan training. arXiv preprint arXiv:2006.10738.

52

